

Assessment of biogeochemical models in the NW Mediterranean

Eduardo Ramírez-Romero¹; Gabriel Jordá¹; Ignacio Catalán¹ ; Mariona Segura-Noguera²; Ángel Amores¹

¹ Mediterranean Institute for Advanced Studies, IMEDEA (CSIC-UIB), Spain (eramirez@imedea.uib-csic.es)
²School of Life Sciences, University of Lincoln, United Kingdom

Intro

Final motivation:

-Promoting and providing BGC model outputs as a tool to wider community of scientist (end users)

Potential applications of BGC models-fisheries and climate change (H2020 Project CERES)

- Validation in NW Mediterranean:
- Relevant sub-basin: economic activities such as marine resources and tourism.

-Which variables/processess are useful and trustworthy? <u>Focus:</u> primary production (PP): patterns and drivers

What drives PP variability??

- Photosynthesis of phytoplankton as a f(): Light & Nutrients
- Simulating **PP** in the ocean:
- Water column:

-mixing/stratification seasonal cycle drives Light
 & Nutrients availability

-fronts/mesoscale processess

Coastal areas-riverine inputs (nutrients)

Balearic Sea: NW Mediterranean

IC-Ibiza Channel, MC-Mallorca Channel,

Balearic Channels:

ED-Ebro Delta

CS-Catalan Shelf.

- Ecoregions with different BGC seasonal patterns and trophic regime (productivity):
- Catalan shelf (CS): intense winter mixing (Gulf of Lion).
- Ebro Delta: shallow and eutrophic
- Balearic Channels (IC/MC): dominated by stratification
- Inflowing Atlantic Waters influence: southernmost area

(Lavigne et al.,2013; Siokou-Frangou et al., 2010; D´Ortenzio and Ribera d´Alcala 2009)

Reanalysis: Coupled-BGC model

- Physical Reanalysis (2000-2016)
- (i) <u>NEMO-BFM</u>: Mediterranean region, which assimilates physical data (SST,SSH) and chlorophyll (CMEMS product)
- (ii) <u>NEMO-PISCES</u>: IBI-W Mediterranean which assimilates only physical data (SST,SSH) (CMEMS product)
- (iii) <u>POLCOMS-ERSEM</u>: IBI-Mediterranean domain, which does not include any data assimilation.

Projections with different climate change scenarios

Physical Reanalysis: main features

	BFM	PISCES	ERSEM
Equations	NEMO-OPA	NEMO-v3.4 model	POLCOMs
Domain (open boundary)	Mediterranean Sea (Atlantic side)	IBI area (Atlantic and Mediterranean Sea)	IBI-Mediterranean
Horizontal Resolution/vertic al levels	1/16º (5-6 Km) / 72 z-levels	1/12º(7-8 km)/ 75 <u>z-levels</u>	1/10º (9-10 km)/ 40 <u>sigma levels</u>
Atmospheric forcing	ERAInterim ECMWF	ECMWF ERA-Interim	ERWAInterim ECMWF Model
Rivers runoff	monthly mean datasets: the Global Runoff Data Centre dataset (Fekete et al., 1999)	Merge of daily SMHI & PREVIMER & Monthly climatology (GRDC)	second version of Global NEWS

BGC models: main features

-Plankton Functional Type models: different groups within e.g. Phytoplankton -Different elements: Carbon, Nitrogen, Phosphorus...

BGC model	BFM	PISCES	ERSEM
Simulated elements and variables (phytoplankton)	C,N,P,Si, Chl, Fe	C,N,P,Si, Chl, Fe	C,N,P,Si,Fe
Phyto. groups	diatoms, flagellates, picophytoplankton and dinoflagellates	Nanoflagellates, diatoms	diatoms, nanoflagellates, picophytoplankton, and dinoflagellates
Nutrient uptake/assimilation	Monod/Droop	Monod	Lineal/Droop
Phytoplankton Stoichometry	Flexible. ½ to 2x Refield ratio (N/P)	Redfield fixed C/N/P = 122/16/1	Flexible. ½ to 2x Refield ratio (N/P)
Nutrient inputs: Rivers	Monthly scale from direct observations (Ludwig et al., 2009). All other inputs are treated as constants	DOC, DIC from Ludwig et al. (1996) and transformed to N/P/Si with constant ratios	Global NEWS database

Observations

Satellite data

-from CMEMS platform including **SST**, **chlorophyll** and geostrophic currents (**u**,**v**) from SLA.

• <u>In situ</u>

-public databases from **oceanographic surveys**: IBAMAR, MEDAR-MEDATLAS, CMEMS *in situ* products monitoring station (OOCS) and **high spatial resolution glider data** from SOCIB

-T,S, density, chlorophyll, nutrients (nitrate, phosphate)

-Monthly averaged obs vs. monthly output

Circulation patterns (m/s)

-Well captured: <u>Northern Current</u> and <u>Balearic Current</u> (SLH assimilation)

- BFM: N Currenct connected to Balearic C.
- Atlantic influence in South side

-Less intense patterns

Density patterns

100

80

60

40

20

800

600

400

200

Mixed Layer Depth (MLD)-February -density threshold criterion-0.03 Kg m⁻³

- <u>Climatology</u> (e.g. Lavigne et al., 2013) :
- -50 m (No bloom-Algerian subbasin, Balearic Channels), 85 m (Intermittent bloom-NW, CS), and 100 m (Bloom region, Gulf of Lion).
 - Unrealistic intense mixing in ERSEM
 - Input of nutrients and timing and strength of late Winter/Spring bloom

Density patterns

seasons

Density gradient

(10-90 m) (kg m⁻³):

proxy of stratification

- seasonal cycle (warming/mixing)
- North-South gradient (less clear in ERSEM)

Density profiles: seasonal climatology

-seasonal cycle (warming/mixing)

-North-South gradient

-small discrepancies among models

Observations BFM PISCES ERSEM

Nutrient patterns: Nitrate

Nutrient inputs:

- Riverine discharge:
 Ebro river
 Rhone river
- Overall Overestimation in PISCES
- Summer in BFM
- Ebro in PISCES

Winter mixing
 Overestimation in ERSEM

microM

Nitrate profiles

<u>Riverine nutrient:</u>

- -Overestimated in **PISCES**
- -Summer in **BFM**
- -Ebro in ERSEM

Winter mixing:

-Overestimated in ERSEM

Balearic Channels:

Constant nutricline (stratification) -overestimation in deep layers **PISCES/ERSEM**

Observations BFM PISCES ERSEM microM

Temporal series of density/chlorophyll: Ibiza Channel

White dots-Mixed Layer Depth

Gliders data

-late winter bloom during less intensified stratification

-Deep Chlorophyll Maximum

(deepening along springsummer)

ERSEM: winter mixing (light limitation)

Southside basin: Stratification domines

Surface chlorophyll patterns

Chlorophyll profiles: DCM

 BFM: subestimation
 (lower deep nutrient levels and assimilation)

 PISCES: slight overestimation

 ERSEM: shallower and overestimatedlower stratification

Observations BFM PISCES ERSEM mg m⁻³

Conclusions

- Circulation patterns: proper performance with assimilation (BFM, PISCES)
- Density patterns: proper performance (BFM, PISCES) excepting ERSEM: winter mixing and less stratificationimproper timing and magnitude bloom/DCM)
- **Riverine nutrient input:** overestimated in all simulations but outstanding in **PISCES** (masking several processes)
- <u>DCM</u>:

-underestimated in BFM (lower deep nutrients and assimilation)

Thanks for your attention and questions!

Miquel Marquès, 21 07190 Esporles, Mallorca Illes Balears, ESPANYA Tel.: +34 971 61 17 16 Fax.: +34 971 61 17 61