

Coupled Regional Climate Modeling Systems: Pros and Cons

Bodo Ahrens, Praveen K. Pothapakula, Nora Leps, Naveed Akhtar, Cristina Primo Ramos

Goethe University Frankfurt

Discuss our(!) experience with a Regional Climate System Model, i.e. with coupled ocean

Global Climate System Models

Manabe & Bryan (1969):

"Empirical evidence indicates that the poleward heat transport by ocean currents is of the same order of magnitude as the poleward transport of energy in the atmosphere (Sverdrup, 1957)."

Global Mean Surface Temperature Anomalies

from 1961-1990 average

Example: MPI-ESM

		Atmosphere	Ocean				
MPI-ESM1.2-LR		T63 (1.9° x 1.9°) 47 vertical levels to 0.01 hPa		GR1.5 (1.5° x 1.5°) 40 levels			
MPI-ESM1.2-HR	ECHAM6.3	T127 (1.0° x 1.0°) 95 vertical levels to 0.01 hPa	MPIOM1.63	TP04 (0.4° x 0.4*)			
MPI-ESM1.2-XR*		T255 (0.5° x 0.5°) 95 vertical levels to 0.01 hPa		40 levels			
ICON-ESM-LR	ICON-AES	Icosahedral 160 km 47 vertical levels to 80 km	ICON-OES	Icosahedral 40 km 64 levels			

* The MPI-ESM1.2-XR is part of HighResMIP and will not perform the full DECK.

Global Mean Surface Temperature Anomalies

from 1961-1990 average

Example: MPI-ESM

* The MPI-ESM1.2-XR is part of HighResMIP and will not perform the full DECK.

MedSea 19.6.00

Γ															I		
0	1.3	2.7	4	5.3	6.7	8	9.3	10.7	12	13.3	16	17.3	3	2	20	21.3	24

6 Bodo.Ahrens@iau.uni-frankfurt.de

Wind speed [m/s]

MedSea 19.6.00

1.3

Regional Coupled Systems

Example: HWRF (operational since 2007)

Moisture source & receptor regions unt an MAIN

RCSM COSMO-CLM/NEMO

Evaporation over the Med.-Sea

in W/m2

Lebeaupin et al. 2015

Medicane 10 Dec. 1996, 18:00; 10-m Wind

14 Bodo.Ahrens@iau.uni-frankfurt.de

Akhtar et al., NHESS, 2014

Near Sea Added Value:

Precipitation difference to E-Obs in mm/day Infrared satellite image from NOAA-9 at 0210 UTC 11 January 1987

Pham et al. 2014, 2015

Near Sea Added Value: Convective GOETHE GOETHE UNIVERSITÄT UNIVERSITÄT Snowbands

Pham et al. 2014, 2015

Centennial sim. in MPI-ESM nudged to NOAA/NCEP20CF

T_2M diffs (Coupled–Uncoupled), DJF, mean 1901–2009

T_2M diffs (Coupled–Uncoupled), JJA, mean 1901–2009

Centennial sim. in MPI-ESM nudged to NOAA/NCE

T_2M diffs (Coupled–Uncoupled), DJF, mean 1901–2009

T_2M diffs (Coupled–Uncoupled), JJA, mean 1901–2009

HPE 12-13 Aug 2002

Ocean ini: NEMO simulation with ERA-40 forcing

Nested in MPI-ESM hindcasts

MSESS coupled vs stand alone in comparison with obs.

GOETH

UNIVERSIT

Subr

ສ

et

0.12 0.04

> -0.08 -0.12 -0.16 -0.2

-0.24 -0.28

-0.08 -0.12 -0.2 -0.24 -0.28

Ocean ini: NEMO simulation with ERA-40 forcing

Nested in MPI-ESM hindcasts

lon

MSESS coupled vs stand alone in comparison with obs.

lon

0.12

-0.08 -0.12 -0.16 -0.2

-0.24 -0.28

-0.08 -0.12 -0.16 -0.2 -0.24 -0.28

lon

GOETH

Ocean ini: NEMO simulation with ERA-40 forcing

Nested in MPI-ESM hindcasts

MSESS coupled vs stand alone in comparison with obs.

0.12

-0.08 -0.16 -0.2

-0.24 -0.28

-0.08 -0.12 -0.2 -0.24 -0.28

GOETH

UNIVERSIT

Ocean ini: NEMO simulation with ERA-40 forcing

Nested in MPI-ESM hindcasts

MSESS coupled vs stand alone in comparison with obs.

Pham et al. Subm

0.12 0.08 0.04

> -0.08 -0.12 -0.16 -0.2

-0.24 -0.28

-0.08 -0.12 -0.16 -0.2 -0.24 -0.28

GOETH

UNIVERSIT

RCSMs show

+ added value in climatologies of near-/sea extremes

(-> www.medcordex.eu)

- + potentially added value in climate projections,
 - o but SST biases in present day simulations
 - o limited maturity (no 300y control sim. ...)
- o limited added value "far" from coastlines (added value obscured?)

- - -

Summary

RCSMs need

- o atmosphere & ocean LBCs
- o ocean adds to the atmosphere's LBC challenge (like increasing domains)
- o ocean initialisation (spin-up procedure, ocean ana.)
- resources (nightmare for small research groups systems need to be more user-friendly and flexible)

RCSMs are

+ perfect fit as testbeds for ESMs

RCSMs add realism i.e. complexity!

"OK, so the computer has understood, but what about me?" — Eugene Wigner

