The climate over the past 2000 years

Eduardo Zorita Institute for Coastal Research, Helmholtz-Zentrum Geesthacht

Centre for Materials and Coastal Research

High-latitude near-surface temperature in the last 70 mill. years

Pleistocene Climate variations recorded in Antarctic Ice

WHAT ENDED THE ICE AGES?

Orbital variations called Milankovitch cycles seem to have triggered the beginning and end of many ice ages, but they cannot explain the full extent of the temperature changes (top). Ice core records suggest CO₂ helped amplify the changes (middle)

● CO₂ level (parts per million) ● Relative deuterium content of ice, indicating local temperature

Reconstructed European Holocene temperatures from pollen assemblages

West

Winter

Northern and Central Europe warmer in the **Mid-Holocene Optimum**

Reconstructed Northern Hemisphere temperatures in the past two millennia

Medieval Warm Period ->Little Ice Age ->Recent Warming

Important climate forcings during the Holocene (last millennia)

22.1°

24.5

Orbital parameters

Solar activity: Total Solar Irradiance or UV variability

Low -to-Medium certainty

Anthropogenic Greenhouse gases

high certainty

Volcanic eruptions

Low certainty

Proxies for climate reconstructions

19 cm long section of GISP 2 ice core from 1855 m showing annual layer structure illuminated from below by a fiber optic source. Section contains 11 annual layers with summer layers (arrowed) sandwiched between darker winter layers.

Long-term orbital forcing:

Recent trends in insolation due to orbital changes

Model response to purely orbital forcing (model ECHO-G)

Oetzi1 , near-surface temperature linear trends, last 2000 years echo-g odel , only orbital forcing

June-August temperature trends caused by orbital forcing last 2000 years

Esper et al., Nature Climate Change, 2012

Solar forcing: CMIP basically follows the Krivova et al. reconstructions

Two estimations of volcanic forcing Likely, the most important forcing over the past 2000 years

Schmidt et al. 2011

An additional anthropogenic forcing, important at regional scales

cropland distribution

Grid-cell-scale proportions of different land-use (13 classes) that modulate surface roughness, albedo, evapotranspiraion

Courtesy of Julia Pongratz, MPI Hamburg

Northern Hemisphere temperature mean: simulations and reconstructions

Gray shading: envelope of reconstructions (with uncertainties)

Fernandez-Donado et al., Climate of the Past 2013

Simulated climate over the past 2000 years

Regional temperature reconstructions over the past 2000 years PAGES 2k (Past Global Changes Program))

Figure 2 | Continental-scale temperature reconstructions. 30-year-mean temperatures for the seven PAGES 2k Network regions, standardized to have the same mean (0) and standard deviation (1) over the period of overlap among records (Ap 1190–1970). North America includes a shorter tree-ring-based and a longer pollen-based reconstruction. Dashed outlines enclose intervals of pronounced volcanic and solar negative forcing since Ap 850 (see Methods). The lower panel shows the running count of number of individual proxy records by region. Data are listed in Supplementary Database S2.

Reconstructed European summer temperature Pages 2K

Reconstructed European summer temperature: rank of extreme years

European summer temperature over last 2000 years: reconstructed and simulated

Climate simulations that we will discuss in this talk

Community Earth System Model, NCAR 8 simulations, all forcings, 850-2005

Max-Planck-Institute Earth System Model-P 3 simulations, all forcings, 900-1850

Gao et al. volcanic forcing

Crowley and Untermann volcanic forcing

Assignment: can you identify one of the big eruptions?

Amplitude of forced and internal variations is not spatially homogeneous

Samalas versus Tambora

European scale: eruptions more difficult to distinguish from the 'internal background'

Internal variability superposed on large extreme events

Tambora eruption 1816

Internal variability superposed on large extreme events

Jungclaus et al., MPI-Hamburg, Millennium project

Reconstruction of Stockholm winter-spring temperature from tax records in the past 500 years

- Sailing season started each year as soon as ice conditions allowed
- Date of ice break-up closely related to seasonal mean Stockholm temperatures in winter and spring

Anders Moberg, MILLENNIUM project

Zorita et al., Climatic Change 2010

Simulated indices of the annular modes in a paleo-simulation ensemble

Gómez-Navarro and Zorita, Geophys. Res. Lett. 2013

Why is all this stuff relevant for future climate projections?

- Understand how climate reacts to changes in external forcings

If we understand how temperature reacts to lower solar activity, we <u>may</u> better understand how climate reacts to increases in greenhouse gases

- Cross bad models off

If we identify models that do not perform well in simulating past climates, we may disregarded them for future climate projections