# **Regime shifts**

# Thorsten Blenckner Stockholm Resilience Centre Stockholm University



A centre with:





FUNDED BY



# Structure of the talk

- Introduction
- Regime shift theory
- Test regime shifts in ecosystems
- Marine regime shifts
  - Coral reefs
  - Black Sea
  - Baltic Sea
- Baltic Sea summary in relation to other systems
- Overall conclusions

















The Challenge: Sustainable Management of an Ever-Changing Planet





|      | Cosenations, Northern Hestinghere, provy data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Clickel<br>institution antal<br>observations. | Projections | Several models<br>all SRES envelop |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------|------------------------------------|
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                             | -           | /                                  |
| 2.5  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               | 1           | /1                                 |
| 50   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               | 1           | /                                  |
| 4.5  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               |             |                                    |
| 4.0  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               |             |                                    |
| 3.5  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               |             | T- TI                              |
| 3.0  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               | 11          |                                    |
| 2.5  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               | 1           | I                                  |
| 2.0- |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               | IV          | 1 1                                |
| 1.5- |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               | 11          | 1                                  |
| 1.0  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               | 1           | I Goss show the                    |
| 0.5  | a matter start for the line of a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                               | /           | produced by<br>several mediate     |
| 0.0  | and the second sec | . m                                           |             | Scenarios                          |
| 0.5  | and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | m                                             |             | A1T                                |
| 1.0  | and the second interaction of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |             | A2<br>B1                           |
| 10   | 00 1100 1200 1300 1400 1500 1600 1700 1800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1900 2                                        | 200 21      | 00 82<br>1590.a                    |



















## Systems can change abruptly



Hughes et al 2005





#### Savanna





#### Grasslands



#### **Tropical forests**

### Regime shifts can be seen empirically by jumps in time series data



Savanna to desert conditions in the Sahara

#### Duration of shift is rapid relative to time in each regime

# Regime shift theory

- "Sudden, large, long-lasting shifts in ecosystem structure and function"
- In ecology, is closely related to resilience.
- 1973, Holling defined resilience as the ability of a system to persist in a particular domain of attraction rather than being pushed into a different domain – i.e., the ability to withstand a regime shift.
- alternative stable states or multiple equilibria
- "the ability of a system to internally switch between different self reinforcing processes that dominate how the system functions" (Cumming & Norberg 2008)

#### **Concept: Regime shifts**



TRENDS in Ecology & Evolution

# Strengths of Feedbacks Gradual, threshold, hysteresis Locked regime states ?



# Can we find this in real ecosystems ?



Nutrients

Scheffer et al 2001



(Bennett et al 2005; Biggs et al 2012)









Scheffer 2009

# What about marine systems ?

## Reported regime shifts in marine systems

- Black Sea (Daskalos et al 2002, 2007)

....

- North Sea (Weijerman et al. 2005, Alheit et al. 2005, Reid et al 2001, Beaugrand et al. 2003, 2008, Beaugrand 2004, Llope et al 2009)
- North West Atlantic / Scotian Shelf (Frank et al 2005, 2006, 2007)
- North Pacific (Hare & Mantua 2000, Wooster & Zhang 2004)
- Baltic Sea (Möllmann et al 2000, 2005, 2008a, 2009, Casini et al 2008,2009; Österblom et al 2007, Alheit et al 2007)
- => disruptive changes in ecosystem services, i.e., fisheries productivity
- => extensive fluctuations of harvested fish stocks

# Drivers of regime shifts in marine systems

- fisheries
- climate change
- eutrophication
- non-native species invasion
- etc..
- *interaction* of those...









# Why fishing magnifies fluctuations in fish abundance



Stenseth & Rouyer 2008, based on Anderson et al 2008

## Flow of energy in marine systems



# Changes bottom up – top down dynamics



Litzow & Ciannelli et al 2007

### Regime shifts in marine systems



Blenckner & Niiranen 2012

# Some more detailed examples:

- Coral reefs ("recovery" potential)
- Black Sea (eutrophication + fishing)
- Baltic Sea

## **Coral reefs**







\*: pulse perturbation solid line: community structure blue-dotted: key-process (state variable)

a) Recovery

b) Regime shift following disturbance

c) "Cryptic" regime shift before disturbance (e.g. the Caribbean story)

Nyström et al. 2009 (Coral Reefs)



**Fig. 2.** (A) Healthy reefs are characterized by a high degree of habitat heterogeneity, which provides habitat for fish and invertebrates. (B) A Z-shaped fish trap commonly used throughout the Caribbean (7). (C) Removal of fish is likely to have promoted population growth of the echinoid *Diadema antillarum*, which became the dominant macroherbivore on overfished reefs throughout the Caribbean (13). (D) After the mass mortality of *Diadema* from disease in 1983, spectacular algal blooms ensued on overfished reefs. In Jamaica, abundance of macroalgae has increased steadily for the past decade (see Fig. 3B). (E and F) Macroalgal overgrowth and preemption of space for larval recruitment has caused a dramatic decline in abundance of corals. Here, a massive coral has been partially smothered by *Lobophora* (E), killing tissue overlying the white coral skeleton as revealed by peeling away the algae (F).

Jamaica – the archetypical example of a coral reef regime shift



Hughes 1994 (Science)

#### Multiple-states in coral reefs





Norström et al., 2009 (MEPS)



## **Black Sea**







Changes in trophic levels



Several shifts have been described for the various trophic levels

# Today lower zooplankton biomass and fish catch



Oguz & Velikova 2010

## Do we see shifts in the Baltic Sea ?

## **The Baltic Sea**



### **Characteristics**

- large semi-enclosed brackish water body
- low diversity
- high productivity
- eutrophication
- high fishing pressure
- climate influences through temperature and salinity

| Sub-<br>system        | Hydrography                 | Diversity | т | S |
|-----------------------|-----------------------------|-----------|---|---|
| The Sound             | Strong halocline            | 1         | 1 | 1 |
| Central<br>Baltic Sea | Strong halocline            |           |   |   |
| Gulf of Riga          | Mixed but partly stratified |           |   |   |
| Gulf of<br>Finland    | Mixed but partly stratified |           |   |   |
| Bothnian<br>Sea       | mixed                       |           |   |   |
| Bothnian<br>Bay       | mixed                       |           |   |   |



## Aim

- Comparative approach to study the importance of global to regional drivers on 6 connected subecosystems
- Do the 6 sub-systems with different environmental and structural settings respond in common or idiosyncratic ways to external forcing

### Methods: Ecosystem State & Abrupt Shift

- Principal Component Analysis (PCA) on all biotic variables – PC1 as index of ecosystem state
- Regime shift test:
  - Sequential regime shift detection method (STARS, Rodionov, 2004)
  - Chronological clustering (Legendre et al 1985)

## **Methods – Test for Drivers**

- Regression analysis of abiotic time-series vs biotic PC1
  - <u>Overall 6 sub-systems analysis:</u> Generalized Additive
    Mixed Model (GAMM) accounting for spatial and temporal correlation
  - <u>Single sub-system analysis</u>: Generalized Additive
    Model (GAM) ) accounting for non-linearity
  - the most parsimonious model was identified using the Akaike Information Criterion (AIC)
### **Data Monitoring (218 in total)** on multiple trophic levels 1979-2006

| System  | The<br>Sound | Central<br>Baltic | Gulf of<br>Riga | Gulf of<br>Finland | Bothnian<br>Sea | Bothnian<br>Bay |
|---------|--------------|-------------------|-----------------|--------------------|-----------------|-----------------|
| Biotic  | 28           | 31                | 13              | 16                 | 22              | 13              |
| Abiotic | 14           | 29                | 12              | 14                 | 13              | 13              |
| Sum     | 42           | 60                | 25              | 30                 | 35              | 26              |

### Abrupt changes in all Sub-Systems

- All abiotic & biotic variables (PC1<sub>A&B</sub> from PCA)
- Regimes identified using STARS on PC1s (red lines)
- Almost synchronous changes in all subsystems



### Drivers

### **Overall 6 Sub-Systems Analysis**

- using basins as factors and basin-specific year smoothers to account for spatial and temporal autocorrelation
- <u>Abiotic variables used</u>: winter nutrients, salinity, winter climate (Baltic Sea Index), fishing
- <u>best model:</u>
  - only winter climate (Baltic Sea Index) as the overall significant driver (17%, p<0.01, n=167)</li>

### **Abrupt Shifts in Biotic Variables**



### South

### **Drivers in Single Sub-System Analysis**

| PC1 <sub>bio</sub>    | Temp spr | Temp su | Salinity | Pwin  | F     | Explained<br>variance % |
|-----------------------|----------|---------|----------|-------|-------|-------------------------|
| Bothnian<br>Bay       |          |         | * * *    |       | *     | 78                      |
| Bothnian<br>Sea       |          |         | * * *    |       |       | 86                      |
| Gulf of<br>Finland    | **       |         |          | * * * | *     | 69                      |
| Gulf of<br>Riga       |          |         | *        | * * * |       | 65                      |
| Central<br>Baltic Sea |          | *       |          |       | * * * | 75                      |
| The<br>Sound          |          | **      |          | * * * |       | 76                      |

Significance levels: p<0.05\*, p<0.01\*\*, p<0.001\*\*\*

### Conclusions

- Synchronous large-scale climate induced changes in the connected Baltic Sea systems
- Sub-system changes are induced by stochastic interplay of multiple drivers, i.e., nutrients, temp, salinity and fishing acting basin specific
- Ecosystem based management must be crosssectoral, adaptive and based on data assessments and modelling

### But what is really happening?

### Eutrophication

- Causing increase in prim. prod, and anoxic areas (feedback with P)
- Still positive trends/constant in P and/or N load in some areas (GoF, GoR, BoS)
- Decrease in both N and P in the Sound
- Effects phytoplankton but no clear overall species change
- Effects anoxic area



Savchuk et al. 2008

### Long-term dynamic of the Baltic Sea ecosystem



Results from ECOSUPPORT Bo Gustafsson & Bärbel Muller-Karulis

### **Phytoplankton**

Cold winters => Diatoms Mild Winters => Dinoflagellates

Increased grazing after mild winters control diatom spring bloom (Wasmund et al 2013)

Changes in the phytoplankton community have taken place both at species (Hajdu et al. 2000) and functional group level (Wasmund et al. 1998) and composition is not associated with eutrophication (Olli 2011).



Alheit et al. 2005

## Zooplankton & climate

- Changes in plankton abundances, community structure, phenology and geographic ranges are evident over large scales (Hays et al 2005, Richardson 2008)
- Responses are species-specific
- In the Baltic Sea two drivers, temp & salinity
  - Spring biomass of Acartia sp and Temora longicornis / Eurytemora increased due to spring SST in late 1980s
  - Pseudocalanus sp decrease due to salinity decrease
  - Bosmina sp increase due to salinity decrease

### Zooplankton, Central Baltic Sea

Climate: salinity and temperature



Source: ICES (2010)

### Fish & climate

- Direct and indirect climate effects on fish species well documented (Stenseth et al 2003, Ottersen et al 2004, MacKenzie 2001 etc...)
- In the Baltic again both temp and salinity
  - Sprat August sea surface temp
  - Cod, reproductive volume
  - Indirect zooplankton biomass/quality, macrozoobenthos

### Fisheries

- Largely effect fish populations
- Effects sensitivity to climate through smaller size and age (Otterssen 2006)
- => trophic cascade



### **Commercial fish stocks**



Source: Data from ICES (2011)







## Thresholds between climate and top-down controls



Casini et al. 2009

### Potential regimes in the Central Baltic Sea



Möllmann et al 2009

### Potential ecological feedbacks



# Does the shift in the Central Baltic Sea matter for other basins in the Baltic ?



### Sink and source effects



Casini et al 2012

### Is this common for all basins ?

### Kattegat



## Regime shift in the Kattegat

- Integrated assessment of long-term monitoring data
- Statistical analysis of multiple environmental & ecological factors
- Identified pelagic to benthic regime shift
- Shift driven by nutrient reductions, climate warming, & fishing



#### Lindegren, Blenckner, Stenseth, GCB, 2012

# Is the shift in the Central Baltic reversible ?

### **Recovery research**



Some hope but there is still much to learn about recovery, here more a regeneration

### Aim

- Quantify thresholds in past food-web dynamics of the Central Baltic Sea
- Identify drivers leading to crossing of the threshold
- Test for the recovery potential of cod

### Analysis

- 3 trophic levels, zooplankton, planktivorous & predatory fish
- Generalized Additive Models and threshold formulation (TGAMs)
- Each trophic level regressed the others and environmental variables (lag 1)



## Example: Pseudocalanus model









Consumption planktivorous fish





### **Building a joint model**


## **Regeneration potential**

 To test the ability of the ecosystem to regenerate to a new cod-dominated state under todays environmental conditions











lenckner et al 2015

## Shifting baseline



Duarte et al 2009

## Summary

- Both additive and threshold effects seem to exist in the Central Baltic Sea food-web
- Main drivers are fishing, temp. and salinity
- Hysteresis effects in three trophic levels
- Shifting baseline and higher variability
- Partly recovery to altered ecosystem state

=> Important for ecosystem-based management

## **Overall summary for the Baltic Sea**

- Regime shifts in the Central Baltic and Kattegat but different processes and drivers
- Spatial effects i.e. Gulf of Riga
- Species dynamics and interactions vary spatially, no general ecosystem dynamics
- The effects of drivers is basin dependent, local and basin-specific management needed

Unknowns:

- Stengths of feedbacks
- Coastal-offshore
- Compounding effects of drivers and thresholds

## Why are regime shifts important?

- They often have large impacts on human wellbeing,
- Are often difficult and costly to reverse,
- Are difficult to predict, often occur unexpectedly.

- Regime shifts require management approaches which:
  - Assess the ecosystem dynamics and regimes
  - Cope with shifts
  - Cope with trigger factors



### **Research Frontiers**

- Comparison of regime shifts
- Early warning signals
- Cross-scale dynamics that shape regimes
- Regimes & ecosystem service dynamics
- Methods, e.g. to account for ecosystem state

# **Comparing Regime Shifts**

#### Literature Synthesis

#### **Emprical Regime Shifts**



Arctic Tundra to Boreal

forcel

**Bivalves** Collanse

Bush Encroachment



www.regimeshifts.org

## Regime Shift Database

#### www.regimeshifts.org

| Regime Shifts DataBase<br>Large persistent changes in ecosystem services                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                 |                                              |                                                                                                                                                                              | AQUATIC SYSTEMS<br>1. Coral transitions<br>2. Kelp transitions<br>3. Bivalve collapse |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Home   Add Regime Shift   Add Case Study   Datasets & Resources   Contributors   About     The Regime Shifts DataBase provides examples of different types of regime shifts that have been documented in social-ecological systems. The database focuses specifically on regime shifts that have large impacts on ecosystem services, and therefore on human well-being.     Latest Regime Shifts                                                                                                                                                                                                           |                                        |                 |                                              | Register Login 4. Fisheries collapse   Quick Search 5. Marine food webs   Regime Shift 6. Eutrophication   -Select a regime shift 7. Hypoxia   Case Study 8. Floating plants |                                                                                       |
| Forest to Savannas   Forest to Savannas   Forest to Savannas   Forest to savannas is a regime shift typical from tropical areas.   Several feedback play an important role including albedo effects, evapotranspiration and clouds forming, fragmentation and fire-prone areas expansion, change in ocean circulation and self organizing vegetation patterns. However, not always these feedbacks are strong enough to produce alternative regimes; and in some areas shifts are expected to occur under stochastic events like ENSO droughts or unlikely events like Earth orbit ch   Read more 1 2 3 4 5 |                                        |                 | Advanced Search<br>Click for detailed search | CLIMATE SYSTEM<br>9. Ice sheet collapse<br>10. Summer Arctic sea ice<br>11. Thermohaline<br>circulation<br>12. Monsoon collapse                                              |                                                                                       |
| Browse Database                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | roachment Collapse of the thermohaline | Coral Bleaching | 0                                            |                                                                                                                                                                              |                                                                                       |

- TERRESTRIAL SYSTEMS
- 13. Bush encroachment
- 14. Forest Savanna
- 15. Savanna Desert
- 16. Tundra Steppe
- 17. Tundra Boreal
- 18. Soil Salinization
- 19. Salinization snow geese

#### STRONG SOCIAL

FEEDBACKS 20. Forest - Cropland 21. Dammed Rivers 22. Locust plagues – outbreaks 23. Development Poverty trap 24. Ecosystem management 25. Urban Sprawl 'Not only is the science incomplete, but the [eco]system itself is a moving target, evolving because of the impact of management and the progressive expansion of the scale of human influences on the planet' Holling C.S. (1995)

# Thank you!

#### thorsten.blenckner@stockholmresilience.su.se

Special thanks to the BEAM project <u>www.smf.su.se/beam</u> the Stockholm Resilience Theme on Regime Shifts the Nordic Centre of Excellence- NorMer, www.normer.uio.no the Formas "Regime Shift project", <u>www.balticnest.org</u> the researchers performing monitoring and data analysis





A centre with:







# Changes in zooplankton





## North Sea

Beaugrand 2004

## **Cod reproductive volume Changes in the future**



1974-2006

2010-2040



Needs to be accounted by management