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Structure of the talk

* |Introduction
* Regime shift theory
* Test regime shifts in ecosystems

 Marine regime shifts

— Coral reefs
— Black Sea
— Baltic Sea

e Baltic Sea summary in relation to other systems
* Overall conclusions
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Systems can change abruptly

Coral reefs Kelps Black Sea

(@) ()

Before

After  Nallg

Hughes et al 2005




Savanna

Grasslands

Tropical forests




L e
Regime shifts can be seen empirically by

jumps in time series data
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Regime shift theory

* “Sudden, large, long-lasting shifts in ecosystem
structure and function”

* |n ecology, is closely related to resilience.

* 1973, Holling defined resilience as the ability of a
system to persist in a particular domain of attraction
rather than being pushed into a different domain —i.e.,
the ability to withstand a regime shift.

* alternative stable states or multiple equilibria

e "the ability of a system to internally switch between
different self reinforcing processes that dominate how
the system functions” (Cumming & Norberg 2008)




Ecosystem state

Concept: Regime shifts
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Strengths of Feedbacks
Gradual, threshold, hysteresis
Locked regime states ?

(a) Gradual (b) Threshold (c) Hysteresis
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Can we find this in real
ecosystems ?




Lake Eutrophication |
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Lake Eutrophication Il

Feedbacks .o
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Bimodality
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What about marine systems ?




e
Reported regime shifts in marine systems

- Black Sea (Daskalos et al 2002, 2007)

- North Sea (Weijerman et al. 2005, Alheit et al. 2005, Reid et al 2001,
Beaugrand et al. 2003, 2008, Beaugrand 2004, Llope et al 2009)

- North West Atlantic / Scotian Shelf (Frank et al 2005, 2006,2007)
- North Pacific (Hare & Mantua 2000, Wooster & Zhang 2004)

- Baltic Sea (Mollmann et al 2000, 2005, 2008a, 2009, Casini et al
2008,2009; Osterblom et al 2007, Alheit et al 2007)

- => disruptive changes in ecosystem services, i.e., fisheries productivity
- => extensive fluctuations of harvested fish stocks
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Drivers of regime shifts in marine systems

* fisheries
* climate change

* eutrophication
* non-native species invasion
* etc..

e interaction of those...
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Why fishing magnifies fluctuations in fish
abundance
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Possible evolutionary reversibility




Flow of energy in marine systems

Cury 2007 Bottom-Up Top- Down Wasp-Waist
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Changes bottom up — top down

dynamics

(a) Climate —trophic control (b) Community state —trophic control
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Regime shifts in marine systems

e 60s, 80s
@ Off shore ®
@ Upwelling
@ Brackish

Coastal
O Enclosed

13 + marine ecosystems

approx. 40 studies -

&

=

. ea

Blenckner & Niiranen 2012




Some more detailed examples:

e Coral reefs (“recovery” potential)
* Black Sea (eutrophication + fishing)
* Baltic Sea




Coral reefs
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Jamaica -
the archetypical example of a
coral reef regime shift

Algal cover (%)

Fig. 2. (A) Healthy reefs are characterized by a high degree of habitat heterogeneity, which provides
habitat for fish and invertebrates. (B) A Z-shaped fish trap commonly used throughout the Caribbean (7).
(C) Removal of fish is likely to have promoted population growth of the echinoid Diadema antillarum,
which became the dominant macroherbivore on overfished reefs throughout the Caribbean (73). (D) After
the mass mortality of Diadema from disease in 1983, spectacular algal blooms ensued on overfished 1975 1980 1985 1990 199!
reefs. In Jamaica, abundance of macroalgae has increased steadily for the past decade (see Fig. 3B). (E Year

and F) Macroalgal overgrowth and preemption of space for larval recruitment has caused a dramatic

decline in abundance of corals. Here, a massive coral has been partially smothered by Lobophora (E), .

killing tissue overlying the white coral skeleton as revealed by peeling away the algae (F). Hughes 1994 (Science)




Multiple-states in coral reefs
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Norstrom et al., 2009 (MEPS)




Recovery to what?

Acropora-dominated

STATE ; _ 4

Ecosystem state

Nystrom 2006




Black Sea

Black Sea




Changes
in trophic
levels
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Today lower zooplankton biomass and
fish catch

I
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Do we see shifts in the Baltic Sea ?




The Baltic Sea

Characteristics

e large semi-enclosed brackish
water body

e low diversity

e high productivity

e eutrophication

e high fishing pressure

e climate influences through
temperature and salinity
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L
Aim

 Comparative approach to study the importance of
global to regional drivers on 6 connected sub-
ecosystems

* Do the 6 sub-systems with different environmental

and structural settings respond in common or
idiosyncratic ways to external forcing




Methods: Ecosystem State & Abrupt Shift

* Principal Component Analysis (PCA) on all biotic
variables — PC1 as index of ecosystem state

* Regime shift test:

— Sequential regime shift detection method
(STARS, Rodionov, 2004)

— Chronological clustering (Legendre et al 1985)




L
Methods — Test for Drivers

* Regression analysis of abiotic time-series vs biotic PC1

— Overall 6 sub-systems analysis: Generalized Additive
Mixed Model (GAMM) accounting for spatial and
temporal correlation

— Single sub-system analysis: Generalized Additive
Model (GAM) ) accounting for non-linearity

— the most parsimonious model was identified using the
Akaike Information Criterion (AIC)




Data Monitoring (218 in total)
on multiple trophic levels 1979-2006

Biotic

Abiotic 14 29 12 14 13 13

Sum 42 60 25 30 35 26




Abrupt changes in all

Sub-Systems

® All abiotic & biotic
variables (PC1,.,
from PCA)

® Regimes identified
using STARS on PCl1s
(red lines)

® Almost synchronous

changes in all sub-
systems

Blenckner in prep
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Drivers
Overall 6 Sub-Systems Analysis

e using basins as factors and basin-specific year
smoothers to account for spatial and temporal

autocorrelation

* Abiotic variables used: winter nutrients, salinity,
winter climate (Baltic Sea Index), fishing

* best model:

— only winter climate (Baltic Sea Index) as the
overall significant driver (17%, p<0.01, n=167)




Abrupt Shifts in Biotic Variables
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Drivers in Single Sub-System Analysis

Bothnian
Bay

Bothnian -
Sea

Gulf of
Finland
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Riga 65

Central . en
Baltic Sea

The
Sound

75

* % % % % 76

Significance levels: p<0.05*, p<0.01**, p<0.001***




Conclusions

* Synchronous large-scale climate induced changes
in the connected Baltic Sea systems

e Sub-system changes are induced by stochastic
interplay of multiple drivers, i.e., nutrients, temp,
salinity and fishing acting basin specific

* Ecosystem based management must be cross-

sectoral, adaptive and based on data assessments
and modelling




But what is really happening?




Eutrophication

e Causing increase in prim. prod,. and anoxic
areas (feedback with P)

o Still positive trends/constant in P and/or N
load in some areas (GoF, GoR, BoS)

e Decrease in both N and P in the Sound

* Effects phytoplankton but no clear overall
species change e

000000

 Effects anoxic area oo I
10,000 -

Savchuk et al. 2008 Prisiie _ Today
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Long-term dynamic of the Baltic Sea ecosystem

Phytoplankton
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Phytoplankton

Cold winters => Diatoms
Mild Winters => Dinoflagellates

Increased grazing after mild winters
control diatom spring bloom
(Wasmund et al 2013)

Changes in the phytoplankton
community have taken place both
at species (Hajdu et al. 2000)

and functional group level
(Wasmund et al. 1998)

and composition is not associated
with eutrophication (Olli 2011).

Alheit et al. 2005
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Zooplankton & climate

* Changes in plankton abundances, community
structure, phenology and geographic ranges are
evident over large scales (Hays et al 2005,

Richardson 2008)
* Responses are species-specific

* |n the Baltic Sea two drivers, temp & salinity

— Spring biomass of Acartia sp and Temora longicornis /
Eurytemora increased due to spring SST in late 1980s

— Pseudocalanus sp decrease due to salinity decrease
— Bosmina sp increase due to salinity decrease




e
Zooplankton,

Central Baltic Sea

* Climate: salinity and
temperature
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Fish & climate

* Direct and indirect climate effects on fish
species well documented (Stenseth et al 2003,
Ottersen et al 2004, MacKenzie 2001 etc...)

* |n the Baltic again both temp and salinity
— Sprat August sea surface temp
— Cod, reproductive volume

— Indirect zooplankton biomass/quality,
macrozoobenthos




Fisheries

e Largely effect fish populations

e Effects sensitivity to climate through smaller
size and age (Otterssen 2006)

* =>trophic cascade
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e
Thresholds between climate and top-down
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Potential regimes in the Central Baltic Sea
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Reorganized ecosystem
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Potential ecological feedbacks

A ‘ AP PP
Anoxia feedback Anoxia-Predator Predator-Prey
feedback feedback

Reproductive failure

@ Top predator
Predator
Predation rolica
@ Anoxia Food
reduction B
Decom- "
position P-release 0 Meso predator eyl
© Phytoplankton
Predation
@ Zoo plankton

Predator release

Nystrom et al in 2012




Does the shift in the Central Baltic Sea
matter for other basins in the Baltic ?




Spatial effects

Effects in the Gulf of Riga

B

Processes in the Main Basin
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Sink and source effects

Main Basin Gulf of Riga
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Is this common for all basins ?
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e
Regime shift in the Kattegat

* Integrated assessment of long-term monitoring data

A. Pelagic state | Transition state | B. Benthic state

* Statistical analysis of
multiple environmental &
ecological factors

Low PP,
High Secchi depth

* |dentified pelagic to
benthic regime shift

* Shift driven by nutrient N P
reductions, climate
warming, & fishing

BSI, 55T, Oxygen (winter)

1982-1988 | 1989-1991 | 1992-2008

Lindegren, Blenckner, Stenseth, GCB, 2012




Is the shift in the Central Baltic
reversible ?




Recovery research

(a) Initial state Disturbed state Final state

(b)

Response variable
(e.g. abundance or diversity)

Full recovery

Partial recovery to
reduced or altered
state

B Norecovery

>

Depletion Recovery

) Full'recovery

- Partial recovery
I\

/
3~ No recovery

Time

TRENDS in Ecology & Evolution

Some hope
but there is still
much to learn about
recovery, here
more a regeneration

Lotze et al 2011




Aim

e Quantify thresholds in past food-web dynamics of
the Central Baltic Sea

* |dentify drivers leading to crossing of the threshold
e Test for the recovery potential of cod




Analysis

* 3 trophic levels, zooplankton, planktivorous &
predatory fish

e Generalized Additive Models and threshold
formulation (TGAMSs)

* Each trophic level regressed the others and
environmental variables (lag 1)




Example:
Pseudocalanus model
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effects of covariates Cod threshold

(@[ o
Q] &~
[~ =le ~
I IR ey S =
A g o i
& LOW| &
1 I I 1 1
62 63 64 65 68
Small pelagics
o™
&~
o o i
Salinity = o
—
effect Z I
“ HIGH

95 100 105 | 1975 1985 1995 2005
Salinity Year

BSmodels_iterations.R

s




Cod threshold

effects of covariates
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Cod
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Building a joint model
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e
Regeneration potential

* To test the ability of the ecosystem to
regenerate to a new cod-dominated state
under todays environmental conditions
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e
Summary

e Both additive and threshold effects seem to exist
in the Central Baltic Sea food-web
* Main drivers are fishing, temp. and salinity

* Hysteresis effects in three trophic levels
e Shifting baseline and higher variability

* Partly recovery to altered ecosystem state

=> Important for ecosystem-based management




Overall summary for the Baltic Sea

* Regime shifts in the Central Baltic and Kattegat
but different processes and drivers

e Spatial effects i.e. Gulf of Riga

e Species dynamics and interactions vary spatially,
no general ecosystem dynamics

* The effects of drivers is basin dependent, local
and basin-specific management needed

Unknowns:

e Stengths of feedbacks

* Coastal-offshore

* Compounding effects of drivers and thresholds



Why are regime shifts important?

They often have large impacts on human wellbeing,

Are often difficult and costly to reverse,

Are difficult to predict, often occur unexpectedly.

Regime shifts require management approaches which:
* Assess the ecosystem dynamics and regimes
* Cope with shifts

e Cope with trigger factors




Research Frontiers

 Comparison of regime shifts

e Early warning signals

* Cross-scale dynamics that shape regimes
 Regimes & ecosystem service dynamics

 Methods, e.g. to account for ecosystem state




Comparing Regime Shifts

Literature Synthesis

Regime Shifts DataBase

Large persistent changes in ecosystem services

Home What Is a regime shift? Datasets / Resources Add Data Contributors About

The Regime Shifts DataBase provides examples of different types of regime shifts that have been
documented in social-ecological systems. The database focuses specifically on regime shifts that
have large impacts on ecosystem services, and therefore on human well-being.

Latest additions

River Channel Position

In freshwater lake and river systems, a river channel position regime
shift occurs when the main channel of a river abruptly changes its
course to a new river channel. Meandering and braided rivers are
especially vulnerable to such shifts. The actual shift of the channel
usually follows a large flood event, but other factors make the
system susceptible to the shift. Most commonly, sediment buildup
blocks the riverflow due to changes in current and riverbed gradient.
In other cases, a cutoff occu...

! ° Read more
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Arctic Tundra to Boreal Bivalves Collapse Bush Encroachment Coral Transitions
forest

www.regimeshifts.org
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Quick Search

Regime Shift
| - Select a regime shift - %

Detailed Case Study
| Please select s

BasicCaseStudy
| - Select a case study - i

Advanced Search

© Click for detailed search

Subscribe

© Click to subscribe to
newsletter

Emprical Regime Shifts
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@ Offshore
@ Upwelling
@ Brackish
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Regime Shift Database

www.regimeshifts.org

Regime Shifts DataBase

Large persistent changes in ecosystem services

Homs Add Regime Shirt Add Case Study Datassts & Resourcas Contributors About

The Regime Shifts DataBase provides examples of different types of regime shifts that
have been documented in social-ecological systems. The database focuses specifically
on regime shifts that have large impacts on ecosystem services, and therefore on human
well-being.

Latest Regime Shifts

Forest to Savannas

chastic

Earth orbit

Browse Database

Thesrmohaline Circulation
gi —

Register

Quick Search

Advanced Search

© Click for datsiled szarch

Nl

AQUATIC SYSTEMS

. Coral transitions

. Kelp transitions

. Bivalve collapse

. Fisheries collapse
. Marine food webs
. Eutrophication

. Hypoxia

0 N ol A WN R

. Floating plants

CLIMATE SYSTEM
9. Ice sheet collapse
10. Summer Arctic sea ice

11. Thermohaline
circulation

12. Monsoon collapse

TERRESTRIAL SYSTEMS
13. Bush encroachment
14. Forest — Savanna
15. Savanna — Desert
16. Tundra — Steppe
17. Tundra - Boreal

18. Soil Salinization

19. Salinization - show
geese

STRONG SOCIAL
FEEDBACKS

20. Forest - Cropland
21. Dammed Rivers

22. Locust plagues —
outbreaks

23. Development Poverty
trap

24. Ecosystem
management

25. Urban Sprawl



‘Not only is the science incomplete, but
the [eco]system itself is a moving target,
evolving because of the impact of
management and the progressive
expansion of the scale of human

influences on the planet
Holling C.S. (1995)




Thank you!

thorsten.blenckner@stockholmresilience.su.se

Special thanks to the BEAM project www.smf.su.se/beam

the Stockholm Resilience Theme on Regime Shifts

the Nordic Centre of Excellence- NorMer, www.normer.uio.no
the Formas “Regime Shift project”, www.balticnest.org

the researchers performing monitoring and data analysis
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Changes in zooplankton
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First principal component
(37.18% of the total variability)

Salinity (central North Sea)

Westerly wind intensity
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(a) Fish (flatfish recruitment)

(b) Calanoid copepods

No match for any of'the
calanoid copepod assemblages

(c) Hydrological vari:ébles

(d) Climatological variables
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Second principal
component (31.36%)

SST Mean umber of
species per assemblage

(central North Sea)

NHT anomalies
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(a) Fish (gadoid recruitment)
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(b) Calanoid copepods

(in black: temperate species;
in grey: subarctic species)

(e) Hydrological variables

(d) Climatological variablesé
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North Sea

Beaugrand 2004




Cod reproductive volume
Changes in the future
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Needs to be accounted by management




