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4 Future climate change

4a. Skill of methods for describing regional climate futures  (Joanna Wibig, Rasmus Benestad, Erik Kjellström, Philip Lorenz, Douglas Maraun)
4a.1 Introduction 
Development of global circulation models (GCMs) has created a best tool for studying how the climate can change in the future. They give the description of climate in a set of grid points regularly distributed in space and time with the same density over lands and oceans. Their temporal resolution is relatively high, however, their spatial resolution is too low. A lot of very important processes like cloud formation, convection, precipitation occur in a spatial scale much smaller  than the distance between grid points. It means that these, so called sub-grid, processes are not explicitly simulated but approximated with simple statistical models called parametrizations. Low resolution means also that the topography, coastline, processes at the land-air, ocean-air and land-ocean boundaries are much simplified in these models. 

Because of low spatial resolution GCMs do not give a realistic description of regional and local climate. It is therefore necessary to downscale the GCMs results. Downscaling is understood as a process linking large scale variables with small scale ones. There are two different ways of downscaling. One of the them uses regional climate models (RCMs) nested in GCMs. RCMs have much higher resolution and can better describe local features. The other group of downscaling methods uses empirical or/and statistical relations between the large scale variables being result of GCMs with small scale variables describing regional and/or local climate conditions. 

Climate projections differ significantly from forecasting weather. Forecasts can’t predict  weather with high accuracy far beyond a few days. Weather models are based on observations in a very large but limited set of points and these observations are made with limited accuracy. Small disturbances in the data can cause a large effect on weather after some time. It was shown by Lorenz (1960) and is known as a “butterfly effect”. Climate models are not interested in a weather on particular day or month but in statistical features of states of the atmosphere over a long time period, ie. chaotic weather averaged over a long enough time. 

There are also other differences between weather and climate. Weather is forecasted for a relatively short time - a few days, usually less than two weeks. That is why weather changes are caused mainly by changes in the atmosphere. Even changes in the oceanic processes exert only very limited influence on weather because of evidently higher time scale of typical processes occurring in the oceans. In the case of climate the other factors have to be taken into account. Climate variations are also caused by changes in the environment: ocean, vegetation, ice, solar changes and composition of the atmosphere. Some of these changes can be predicted with high accuracy, but the other not. Among them there are land use changes and a composition of the atmosphere with the strongest emphasis on concentration of so called greenhouse gases (GHG), sulphur compounds and aerosols. They all exert a very strong impact on climate. Future climate changes are in high degree related to the degree of these changes, so predicting climate requires reliably information on an atmosphere composition and land use. But unfortunately the concentration of GHG in the future atmosphere is not known and is very difficult to be predicted because of enormously big amount of factors influencing it. Instead of it we can make some scenarios of future evolution of population and economy on the world and than the other scenarios how the climate will change if particular scenario happens. 

A set of such scenarios was developed by the International Panel on Climate Change (IPCC) and published in the Special Report on Emission Scenarios (..., SRES). These scenarios represent different possibilities of future evolution determining driving forces. The most important factors are demographic development, socio-economic changes and technological  development. They all exert a strong impact on future greenhouse gas emissions and land use pattern.  There are 40 SRES scenarios, divided into four families based on four storylines: A1, A2, B1 and B2. These storylines differ in speed of population change, technological development, economic growth and convergence among regions. Three groups of scenarios are distinguished within A1 family: A1F1, A1T and A1B. They differ in degree of exploration of alternative energy resources. A1F1 group consists of scenarios with high fossil fuel use. Scenarios in A1T group characterize high percentage of non-fossil fuel energy sources. The diversified, balanced fossil fuel scenarios are collected in A1B group.  Each of the other families creates only one group. Scenarios in particular groups differ in the approach used to characterize future emissions basing on the same development path defined by projected population and socio-economic changes and technological development. No scenario is privileged. No probability is assigned to any scenario. They all define ranges of future greenhouse gases (GHG) emissions and land use changes, particularly agriculture land and forest area. These ranges widen with time because of rising uncertainties of demographic, socio-economical and technological development. Total carbon emissions cumulated from all sources (and sinks) range from about 770 to 2540 GtC at the end of the 21st century. 

Beside uncertainty related to our poor information on land use and GHG there are other sources of errors in models. Among them are limited number of input data and their limited accuracy which, according to the chaotic nature of weather, causes that the very small difference in initial conditions can lead to slightly different climate features as each simulation gives different set of weather realizations. If it is the only source of error the differences between different simulations should be hold within the ranges of typical climate variability. Unfortunately it is not the case. Because many sub-grid processes have to be represented in models in a simplified, usually statistical form, and are not very well predicted by these models. For example modeling of cloud formation, their optical and radiative features and creation of atmospheric precipitation are still burden with considerable error.

Because of all these errors climate models should be evaluated on the real past or current climate. It can be done by comparison of simulations with observations. It could lead to selection of the best model, but unfortunately it is not possible. Usually one model can better describe one parameter than the other model, but this second describes better the other variable or the same one but in the other part of the world. Of course it is possible to exclude some models, but still we have a set of models which are quite good but still far from the excellence.  We can estimate the differences between simulations and real climate data on the ground of so called reference period from which we have observational data. These differences, usually called biases, vary in space and typically also in daily and annual cycles. 

The models give the description of climate in set of grid points. Each grid point represents the conditions that exists in a region surrounding this point, being the mean value for this region. It is a reason why the distributions of simulated variables are usually smoothed in comparison with station data. Simulations underestimate the highest values and overestimate the lowest ones (Deque, 2007). It means that the bias is also different in different parts of distribution. 

There is really a big number of sources of errors of climate predictions, so preparing a scenario for future is a big challenge. Any singular method can’t be used for all variables and regions. 

4a.2 Validation Techniques 
Any downscaled climate simulation of present day climate or a future climate scenario is a more or less simplified representation of reality. A validation against observational data is therefore crucial to assess the quality of the simulation, in particular for a further use in impact studies. To this end one generally derives a set of indices describing the properties of interest from the reference data set and the model simulation to be validated. The agreement between the reference and the model is quantified by suitably chosen measures. Errors and uncertainties of downscaled climate simulations arise from an imperfect model formulation, uncertain future concentrations of greenhouse gas emissions and internally generated climate variability.  These sources of uncertainty will be dealt with in detail in Section (ERIK).  In a downscaling context, the uncertainty due to imperfect model formulation originates from two parts: errors of the driving global climate model and errors inherent in the downscaling approach itself.  These two types of errors are of interest in the validation.

When validating a GCM/downscaling system against observational data, only the combined error can be evaluated, although the influence of the driving GCM on the downscaled simulation can be assessed by combining a single downscaling method with different GCMs and then comparing the different results (e.g., Nikulin et al., 2011). In such a control run setting one has to be careful not to mix model error and internal climate variability on long time scales. In particular for the estimation of extremal properties, long time series are required and the typical 30-year period might not be long enough to gain robust estimates (Kendon et al., 2008).  The downscaling error can be separated from the GCM error by driving the downscaling method with perfect boundary conditions (Frei et al., 2003), i.e., observational data or reanalysis data. In such a perfect boundary setting, the simulated and reference weather sequences are more or less synchronised, allowing for relatively short validation periods (although one should be careful not to be dominated by individual events). In both approaches it is difficult to isolate the error due to nesting in dynamical downscaling. Therefore, as an alternative approach to separate different error sources in an RCM pseudo reality the so-called big brother experiment has been proposed (Denis et al., 2002).

Before using a regional climate projection for follow-up studies, the assessment of not only the downscaling error but also the GCM error is essential, as misrepresentations of large scale patterns (e.g., the position of the storm tracks) or the temporal structure (e.g., blocking frequency and duration) are important practical limitations.

4a.2.1 Validation Data

Ultimately, the reliability of any validation depends on the observational data used, either as a reference data set or to provide the forcing in a perfect boundary setting. Typical problems with reference data are inhomogeneities, outliers and biases.  Inhomogeneities are jumps in the time series (its mean or other moments) due to changes in the measurement system or the surrounding environment; they might increase uncertainties and induce spurious trends (e.g., Yang et al, 2006). Outliers are erroneously high (or low) values, e.g., caused by multiple day counts of precipitation measurements; they are particularly detrimental for the estimation of extremal properties but may also affect the validation of other quantities. Biases are systematic deviations from reality, such as wind shadows due to buildings or wind induced precipitation undercatch.  Depending on the property of interest, addressing these issues might be essential for a reliable validation. Another common issue is the availability of long reference data sets, which are needed for robust estimates of the indices of interest, especially for extremes and long term variability. In particular for processes with strong small scale variability such as precipitation, station data cannot directly be compared with regional climate data, which are considered to represent areal averages instead of point measurements (Chen and Knutsen, 2008). To overcome this spatial mismatch, gridded data sets have been derived by interpolation and averaging from dense station networks. Prominent examples are the UK Metoffice gridded daily precipitation data set (Perry et al., 2009) and the E-OBS daily data set of temperature and precipitation (Haylock et al., 2008) derived from the ECA&D data base (eca.knmi.nl; Klok and Klein Tank, 2008) as part of the ENSEMBLES project. Crucial for the usefullness of gridded precipitation data sets is the density of the underlying rain gauge network. For instance, it has been shown that the first version of the E-OBS data set has incorporated too few rain gauges to represent extreme precipitation in some mountain regions (Maraun et al., 2011).

To validate large scale features reanalysis data are often taken as reference such as the NCEP/NCAR (Kalnay et al., 1996) or the ERA40 (Uppala et al., 2005) reanalysis. These are numerical model hindcasts into which observational data have been assimilated. As output from numerical models, these data are globally complete at the given resolution and provide a sequence of climate states (usually provided every 6 hours) consistent within the numerical model. However, due to model biases reanalysis data can substantially deviate from reality.  Furthermore, one has to be aware whether observations representing the variable of interest have been assimilated into the model. For instance, precipitation is generally not assimilated into the reanalysis model but fully generated by the model parameterisations; such data are obviously not suitable as reference for validation.  Recent projects such as the North American Regional Reanalysis (Mesinger et al., 2006) therefore assimilate further variables such as precipitation. Their completeness and consistency makes reanalysis data an ideal candidate to provide boundary conditions for a perfect boundary validation.

4a.2.2 Validation Indices 

To validate climate simulations several indices have been proposed, depending on the application of the downscaled product. These indices are often misleadingly called metrics (a metric is a distance measure with clearly defined properties).  For comprehensive lists of indices please refer to the Expert Team on Climate Change Detection and Indices (Peterson et al., 2001), the STARDEX project (Goodess et al., 2011) and the ENSEMBLES project (van der Linden and Mitchell, 2009).  Typical validated indices characterise the intensity of the variable of interest, the spatial and the temporal structure. The new EU COST Action ES1102 VALUE will develop indices in particular to quantify extremes and properties of the diurnal cycle.

Indices to validate the distribution of the variable of interest are statistics such as mean and variance or specific quantiles. For instance, a widely used index for strong but not yet extreme events is the 90th percentile. More generally, indices can be the parameters of a parameterised formulation of the distribution such as the shape parameter describing the tail behaviour. To obtain as robust as possible results, the representation of extreme events should, if possible, be based on parametric distributions motivated by extreme value theory, i.e., the generalised extreme value (GEV) distribution to validate maxima of long blocks and the generalised Pareto distribution (GPD) to validate excesses of high thresholds (Coles, 2001).  Spatial indices are, e.g., spatial correlations, cluster sizes and indices describing spatial patterns. Temporal indices are autocorrelation functions, the annual cycle, variability on interannual to decadal time scales and trends. Other temporal indices describe the length of events such as droughts or wet spells and the transition probability between different states (e.g., from dry to wet). Corresponding extremal indices (which not necessarily follow extreme value theory) would be the maximum length of an event in a defined period, e.g., a season. To increase the reliability of future projections, it is also important to assess the representation of relevant physical processes (e.g., Schär et al., 1999; Lenderink and van Meijgaard, 2008; Kendon et al., 2010; Maraun et al., 2011b).  

An ongoing debate revolves around the question whether the validation should use the data directly with grid box resolution, or whether they should be smoothed in advance. On the one hand, it is argued that regional climate simulations are not meant to be interpreted on a grid box level and therefore the former choice would be too rigid. On the other hand, regional climate model simulations are used on the grid box level, and a validation should not colour the corresponding performance. Furthermore, in impact studies the simulated unsmoothed fields are often required even when they are not interpreted on a grid box level. Smoothing might then hide important spatial properties such as the spatial correlation structure.

The validation indices need to be carefully selected. In particular, they need to be independent of the calibration or tuning. That is, for perfect prog statistical downscaling and model output statistics, calibration and validation need to be carried out as a cross validation on different data sets (e.g., different time periods). Even in a cross validation, the significance of an apparently good performance needs to be critically assessed. If the indices are the predictands explicitly modelled in the perfect prog approach or corrected using model output statistics, they will probably closely resemble the reference indices even in the validation period. Here, good agreement does not necessarily imply a high skill to represent future climate. A similar argument holds for regional climate models, as these are in general tuned to properly simulate the observed climate of a specific region.  These issues will be discussed in more detail in Section (VALIDATION IN A CLIMATE CHANGE CONTEXT).

4a.2.3 Validation Measures

To quantify the discrepancy between the modelled and reference validation indices, a range of validation measures has been defined.  In some validation studies, the discrepancies have not been quantified at all, but just been visually inspected. On the other end of the range are statistical tests which explicitly address the significance of the discrepancies. In all cases, deviations should be interpreted carefully. Whereas a visual inspection might overlook important misspecifications, a significance test might as well be misleading.  Apart from false positive results, the power of a test might simply be too low to detect model errors due to a lack of data; or in contrast a significant deviation might simply be completely irrelevant.

The validation in a control run setting is fundamentally different from that in a perfect boundary setting. In the control run setting, the weather sequences between the model simulation and the validation data are independent.  The validation can therefore only be based on long term (climatological) statistics or, more general, distributions. In a perfect boundary setting, the modelled and observed weather sequences are more or less synchronised. Therefore, in addition to a distributionwise validation, measures developed for the validation of weather forecasts can be applied for an eventwise validation.

4a.2.4 Measures for distributionwise validation

Simple measures that can be applied either to spatial fields or time series are absolute and relative biases, e.g., in mean and standard deviation. Spatial fields can furthermore be validated by their pattern correlation and (root) mean squared error relative to the reference pattern. Taylor (2001) has demonstrated a simple geometric relationship between correlation, standard deviation and the centered root mean squared error (i.e. the root mean squared error of the anomalies relative to the overall bias); based on this relationship, Taylor diagrams are a useful visualisation tool for the performance of different models relative to a common reference. It should be noted, however, that Taylor diagrams do not address the overall biases and provide no confidence intervals.  Also, the ranking of models according to Taylor diagrams is not necessarily invariant under transformations of the validation index (Schindler et al., manuscript in preparation). Further insight can be gained by calculating corresponding measures for quantiles or parameters of distributions.  For the comparison of the overall distribution, the Chi-square test or the Kolmogorov-Smirnov test might be applied (e.g., Semenov et al., 1998; Bachner et al., 2008). Graphical tools for the comparison of distributions are probability (PP) plots and, in particular for extremes, quantile (QQ) plots (e.g., Deque, 2007; Coles, 2001). For a list of measures to validate distributions, see Ferro et al. (2005).

4a.2.5 Measures  for eventwise validation

In a perfect boundary setting, a broad range of additional validation measures can be applied. Since modelled and observed time series are synchronised, measures can be applied that have been applied to validate weather forecasts. The same measures that are only applicable to spatial fields in a distributionwise validation can in this context be applied to validate individual time series. These are, e.g., cross correlations and (centered) root mean squared errors, which then can also be visualised by Taylor diagrams. Measures to validate the occurrence of events are hit rate and false alarm rate, which are summarised in contingency tables (e.g., Wilks, 2006). From these one can derive frequency biases and odds ratios. Also continuous variables can be compared using these measures by defining suitable thresholds. Several downscaling approaches predict local scale probability density distributions rather than specific values; their performance can be validated by probability scores. The classic measure to validate the occurrence of events is the Brier score (Brier, 1950). Continuous events (i.e., intensities) can be validated by the continuous ranked probability score (e.g., Jolliffe and Stephenson, 2003) and the quantile verification score (e.g., Friederichs and Hense, 2007). Absolute score values are often difficult to interpret; therefore they are usually compared with a reference forecast such as the climatology or the best performing method. Such relative measures are skill scores, which can be derived from the aforementioned scores. Further skill scores are the Heidke skill score and the equitable threat score (e.g., Wilks, 2006; Jolliffe and Stephenson, 2003). As an alternative to simple cross correlations, one can assess the performance on different time scales using the squared coherence (Brockwell and Davis, 1991); for an example see Maraun et al. (2011). In essence, in this setting a more rigorous validation is possible, as the capability of a model to simulate the occurrence and magnitude of individual events can be assessed. Of course, this setting does in general not allow for the assessment of GCM errors.

4a.2.6 Validation in a Climate Change Context

A high skill of a downscaling method in the current climate does not necessarily imply a high skill in a future climate (e.g., Christensen and Christensen, 2007). In perfect prog statistical downscaling the predictor-predictand relationships might be non-stationary in time, e.g., because not all relevant factors controlling the local scale variable have been included in the model. Also it is not a priori clear whether the parameterisations of RCMs might capture the changing climate conditions. Finally, biases are not stationary under climate change (e.g., Christensen et al., 2008; Maraun, manuscript in preparation).

To at least partly address these shortcomings, it has been suggested to choose climatically as different as possible time periods to calibrate and validate statistical downscaling models (Maraun et al., 2010). This approach is of course limited by the availability of long time series of high quality. For dynamical downscaling, a similar approach is to check whether a regional climate model performs well in different present day climates (Christensen et al., 2007). Consensus between different simulations is often seen as a measure of skill.  Similarly, a comparison of statistical and dynamical downscaling might provide some insight in the reliability of future simulations. E.g., relationships within statistical downscaling models have been used to validate dynamical climate models (e.g., Busoioc et al., 2001; Maraun et al., 2011). Closely related is the use of RCMs as pseudo realities to assess the stationarity of predictor-predictand relationships and model biases (e.g., Frias et al., 2006; Vrac et al., 2007; Maraun et al., manuscript in preparation). The value of model consensus and related concepts is, however, limited as deficiencies might be common to all models. Therefore, understanding the relevant underlying processes and the quality of their representation by the used models is essential to assess the reliability of future climate simulations (Maraun et al., 2010).

4a.3 Dynamical downscaling 

“Dynamical downscaling” refers to the methodology to achieve climate simulations on high resolution for a specific region by application of Regional Climate Models (RCMs). RCMs are based on atmospheric limited area models used in numerical weather prediction. The first application of RCMs for long-term simulations goes back to the work of Dickinson et al (1989) and Giorgi and Bates (1989). Nowadays RCMs are used by many institutions and have been applied for a large number of studies, and RCM climate change projections have been carried out for regions on all continents.  Overviews about the RCM methodology and their applications are given in several recent review papers (e. g. Giorgi 2006, Rummukainen 2010, Foley 2010).

The methodology of "dynamical downscaling"

Due to limitations in computational resources, the spatial and temporal resolutions of general circulation models (GCMs) covering the whole globe can not be refined arbitrarily. For long-term climate change simulations state of the art GCMs can go down to nominal horizontal resolutions of about 100 km on current super computing systems. As atmospheric systems can be resolved only within several grid boxes, their effective resolution is even much coarser. Therefore GCMs can simulate only large-scale, but not meso-scale atmospheric features, which are relevant for a realistic simulation of the regional climate.

Consequently the principal concept of RCMs is to perform long-term climate change projections on an increased spatial resolution (down to about 50-10 km) only for a specific region of interest. RCMs are limited area versions of three-dimensional atmospheric circulation models, which in principle use the same set of dynamical equations and physical parameterizations as GCMs. As GCM they include for land grid points a model describing the thermodynamics of the upper soil levels.  The main difference of RCMs with respect to GCMs is their lateral boundary, as they work not globally: as the RCM does not have any information outside its modeling domain, it needs to be provided by information about the atmospheric state at its lateral boundaries. This information, the so-called lateral boundary conditions (LBC), are taken from the output of the “driving model”, which can be a GCM, a global (re-) analysis, or - when using a “double nesting” technique - from RCM output simulated on a larger domain in coarser resolution. In order to provide a smooth transition and to avoid numerical problems, a careful LBC treatment is essential for RCM integrations. Typically in a  zone of around 5-8 grid boxes at all lateral boundaries the LBC and the internal solution of the RCM are merged with decreasing weight of the LBC from the boundary towards the center of the domain (e.g. Davis 1976). Additionally, at the lower boundary over sea areas values for sea surface temperature and ice coverage have to be prescribed during the integration. This information is mostly extracted from the driving model like the LBC, as most RCMs are still pure atmospheric models without a coupled ocean component.

The added value of dynamical downscaling

As RCM can resolve meso-scale atmospheric features explicitly, they do add small scale structures to the large-scale circulation provided by the driving model (Feser 2006).  This explicit treatment of small-scale atmospheric features leads for many variables to an added value with respect to the driving model. In particular this is the case for the simulation of precipitation, which additionally strongly depends on topography and land-sea contrast, which are better represented at the increased RCM resolution. Consequently, the simulated mean precipitation patterns as well as the extreme values are enhanced, especially for complex terrain (e.g. Christensen and Christensen 2001, Feldmann et al. 2009, Suklitsch et al. 2008). Another example demonstrating clearly the added value of RCMs is the simulation of coastal winds (Winterfeldt et al. 2009). For further information about the added value of RCMs a review paper about the added value of RCMs including selected examples was published recently by Feser et al. (2011).

Advantages and Disadvantages with respect to statistical downscaling

One of the main advantages of using RCMs for downscaling with respect to statistical downscaling (see chapter XX) lies in the physical motivated methodology: as the formulation of the RCMs is in general based on basic physical laws, it should be valid even under changed climate conditions.  Furthermore, it is applicable in any region of the globe, and is not dependent on observational data like the statistical downscaling methods. As RCMs calculate the state of the atmosphere regularly in three dimensional space and in time, output can be generated for a large number of near variables at or close to the surface as well as for levels above at temporal frequencies down to the internal computational time step of the respective RCM on a regular grid.  Due to the integrated treatment of the atmospheric processes thereby all generated variables are physically consistent to each other, which is not ensured in statistical downscaling methods.

The probably most severe disadvantage of the RCM methodology is the occurrence of systematic biases in the results. These systematic biases, which also show up generally in GCMs, are caused by the fact, that dynamical climate simulations carried out with GCMs and RCMs are bound only to changing atmospheric greenhouse gas concentrations and to not take into account any observational data (e.g. station data). Due to shortcomings in model formulations and parameterizations GCMs and RCMs are not perfect; consequently even mean climatological values produced by these models deviate in general from the corresponding observational values.  In RCM climate projections the systematic biases are a non-linear combination of the systematic error of the driving GCM and of the systematic error of the RCM itself. For many applications based on output from RCM climate projection output these kind of systematic biases are not acceptable. Therefore there is a clear need for bias correction techniques and model output statistics (see section XX).

Another disadvantage is the relatively high amount of needed computer resources, which is strongly dependent on model resolution and the extension of the model domain. 

Recent developments and extensions of RCMs

In the global climate projections the use of coupled atmosphere-ocean models is state of the art (Meehl et al. 2007). However, RCM climate change projections are in general still carried out for atmosphere only, prescribing SST data taken from the driving model (Christensen et al. 2007). Consequently, the quality of the prescribed SST / sea ice data depends on the quality of the global modeling system. Especially for a relatively small and separated ocean like the Baltic Sea the quality might be limited due to the coarse resolution of the global ocean component. A better representation of the water body of such oceans can be generated by the use of high-resolution regional ocean components, which can be coupled to the atmospheric RCM (analogue to global coupled model systems). In recent years a few coupled regional model systems for the Baltic Sea region have been established, mainly as atmosphere-ocean-sea ice models, some including additional river routing schemes, allowing the modeling of the hydrological cycle in a fully way (Döscher et al. 2009, Lehmann et al. 2004).

In conventional RCM simulations the driving model data are used only in the lateral boundary zone, while in the inner of the model domain the RCM is not forced to the driving model.  This can lead to a different large scale flow in the RCM simulation with respect to the driving model. With a so-called nudging technique the solution of the driving model can be prescribed for the whole RCM domain. However, by a scale independent nudging method also the desired small scale circulation features generated by the RCM would be suppressed. In order to circumvent this clear disadvantage, von Storch et al. (2000) introduced the method of “spectral nudging”, in which only the large scale circulation is relaxed towards the driving model in the inner of the RCM domain, while the small scale circulation remain untouched. While the “spectral nudging” technique is nowadays becoming more popular (e. g. Miguez-Macho et al. 2004; Castro et al. 2005), a debate on this technique is still going on: while improvements by the application of spectral nudging is evident when the driving model represents a realistic large-scale flow (e.g. using a reanalysis as driving model, e.g. Winterfeldt et al. 2009). Considering in contrast a coarse GCM with a unrealistic large scale circulation (e.g. caused by shortcomings in the representation of topography due to the coarse resolution) as the driving model, a RCM using spectral nudging could not alter the prescribed large scale flow.

Nowadays most RCMs still use the hydrostatic approximation, assuming the vertical structure being in hydrostatic equilibrium, and consequently neglecting vertical acceleration. This assumption is valid roughly for nominal horizontal resolutions above ~ 10km. Most RCM climate change projections carried out nowadays still use coarser nominal horizontal resolutions between 50 and 20 km (e.g. PRUDENCE and ENSEMBLES), but due to increasing computer power some RCM climate change simulations are going down to resolutions of about 10 km. Due to expected further increase in computational resources, presumably also the resolutions of RCMs will be further refined in future, resulting in the need of the usage of non-hydrostatic RCMs.
Up to now climate change projections are carried out in a so-called one-way nesting mode, meaning that the RCM does not give any information back to the driving model. Recently first investigations of two-way nesting, allowing feedback from the RCM back to GCM (Lorenz and Jacob 2005, Inatsu and Kimoto 2009), indicate the potential for the improvement of the driving global simulation, even in regions far away from the two-way nested RCM domain.

4a.4 Statistical downscaling (Rasmus Benestad)


Fig. 1 An autumn picture of Rondane mountain range in Norway showing the geographical extent of fresh snow. The snow cover depends on the local temperature, in addition to snow fall. Photo: R.E. Benestad.

The fundamental criterion for downscaling is that the local variable of interest depends on the large-scale conditions as well as the local geographical conditions. The large-scale situation is described by a predictor, represented by the symbol X in mathematical equations. The local variable is usually referred to as the predictand and symbol y, whereas the geographical parameters are denoted by symbol g. It is usually not possible to explain the predictand completely in terms of X and g, and the contribution from local small-scale processes are in principle not downscalable, and is therefore  described as small-scale noise η.  Mathematically, this can be expressed as follows:

y = f(X,g) + η.
Fig. 1 illustrates how the local conditions depend on the geography and the large-scale situation. The snow only stays where the temperature is below freezing, which is only above a certain elevation. Furthermore, the large coherent extent of the snow shows that the local temperature is part of a larger pattern. The exact value may vary from location to location (small-scale noise η), but it is possible to say from this picture that the temperature in the snow-covered region is mainly below freezing. 

In the illustration above, the large-scale condition X is the snow-cover, but it is better to use a predictor with a more direct physical relationship to the predictand. Often X can be the mean sea-level pressure or the large-scale temperature pattern.

Different aspects of local and regional climates have different characteristics. For instance, the description of temperature tends to provide spatial patterns which are closely tied with the elevation (Livingstone et al, 1999), as shown in the illustration above. However, for variations in time, the anomalies tend to vary slowly with distance (Hansen et al., 2006). Furthermore, the temperature is close to being normally distributed, which makes linear techniques, such as least squares methods (Wilks, 1995) suitable for modelling temperature changes. The large spatial extension of the temperature anomalies suggests that they are well-suited for downscaling, having a close association with large-scale conditions. The day-to-day changes in the temperature can also be understood in terms of advection, passage of fronts, and radiative forcing (cloudiness). 

Precipitation differs from the temperature in several respects. One particular property that precipitation has, but few other climate variables, is two types of statistical distributions depending on whether there is a wet day or not. For dry days, the distribution is just zero. For wet days, there is another distribution describing the frequency of getting certain amounts. The wet-day distributions cannot be assumed to be normally distributed, but are better described by an exponential or a gamma distribution (Vlček & Huth, 2009). Rain may furthermore be generated by large-scale cloud systems or by local convective storms. Furthermore, mountain ranges (up-slope orographic forcing and rain shadows) and the distance to the coast affect the rainfall statistics. The time evolution of precipitation is characterised by the persistence of rainy days and dry spells, as well as the transition probability between wet and dry.

Wind can be characterised by two variables: the wind speed and its direction (alternatively the zonal and meridional components) (Pryor et al. 2005). Local wind is often a result of chaotic turbulence in addition to the large-scale flow of the free atmosphere above. The flow over geographical features may not be well correlated with the large-scale air flow, and wind direction and speed may change substantially over short distances. Nevertheless, extreme winds are often associated with deep low-pressure systems/storms. 

Because of these differences, different statistical techniques may be required to provide an adequate description of the aspects that we are interested in. The statistical methods can be classified as perfect prognosis methods (Maraun et al., 2010), consisting of  linear (multivariate regression models, canonical correlation analysis), and non-linear methods (analogs, cluster analysis, neural nets). The linear methods are often adequate for describing temperature, but it is also possible to transform some of the other variables so that linear methods may be applied to the terms of either side of an equation describing their dependence. The different models also differ in their calibration strategies and how they are optimised. In addition to these, it may be possible to downscale the shape of the probability density function (pdf) directly, rather than the day-to-day variability of some variable. Downscaling of pdfs seem promising, but does not belong to either the PerfProg or the MOS categories.

4a.4.1 EOFs – a framework for representing the large scales in predictors

The predictors X in downscaling involve identifying large-scale spatial patterns of some variable (e.g. temperature or mean sea-level pressure) that co-varies with the predictand. It is then important to find the same type of patterns in the climate model. The large-scale variability can be described in terms of orthogonal empirical functions (EOFs) (Lorenz, 1956; North, 1982), a kind of principal component analysis (PCA) (Strang, 1988), or in terms of a set of grid point (ref Huth). The spatial structures of the EOFs describe a set of spatially coherent 'modes' that describe the variations of the gridded data. The leading modes describe the structures that are most pronounced and with the greatest spatial scales, and the higher order modes are associated with less variance and smaller spatial scales. 

Often, only a small number of leading EOFs represent real features, whereas the higher order EOFs describe noise (Wilks, 1995). It is therefore possible to describe the main features of a gridded data in terms of a relatively small number of EOFs. Each spatial EOF pattern is associated with a vector of weights, describing how strongly this pattern is present at any time of the record. This vector is often referred to as 'principal component' (PC). The PCs are the basis for the downscaling model calibration, for instance a multiple regression against the predictand. The benefit of using of EOFs is that they are orthogonal and make the model calibration easier and more robust (no co-linearity).

4a.4.2 PerfProg – a brand of calibration strategies.

The brand 'perfect prognosis methods' (PerfProg) describe a class of empirical-statistical downscaling models that involve a specific strategy for model calibration (Wilks, 1995). These use gridded observations or re-analyses (Kalnay et al. 1996; Simmons and Gibson, 2000) to calibrate against a predictand. First a predictor is taken from historical data, usually gridded analysis or re-analysis, and then a relation is found with the predictand (downscaling model calibration). Then the climate model results are compared with the predictors used to calibrate the downscaling model, and steps are made to ensure that model results correspond with the calibration data (e.g. through a regression analysis). The PerfProg method may involve linear and non-linear methods.


A different strategy, known as 'model output statistics' (MOS) use the model output directly in the calibration of the statistical models, rather than gridded observations. MOS can only be used when the model has been run for a period for which there are predictand data, and when the model is constrained by observations so that it is fed information about the day-to-day variations. While MOS can correct for systematic biases, such as shifts in location of storm tracks, the PerfProg strategy assumes that the model results are unbiased. In addition to the PerfProg and MOS strategies, it is possible to employ a hybrid method, involving common EOFs (Benestad, 2001), more on which will be discussed later.


For empirical-statistical downscaling, it is crucial that the same spatial patterns identified as having a strong association with the predictand are found in the climate model results that are used for prediction of local climate characteristics. One way to do this is to carry out two separate EOF analysis, and then use a regression analysis to ensure that similar patterns are used in the climate model (PerfProg). It is also possible to combine the gridded observation and the climate model results on the same grid (by interpolation, and removing e.g. the mean value to by-pass bias problems), and then carry out a 'common EOF' analysis. When using common EOFs, only the part of the PCs representing the observations are used for calibration. This means that the time series are no longer orthogonal, but this strategy ensures that they describe exactly the same spatial pattern in the observations as in the climate model results (Benestad, 2001). The use of common EOFs also eliminates a second step of regression, and hence is simpler in mathematical terms as well as omits one variance-reducing analysis stage.

4a.4.3 Different types of downscaling models

Once the framework for representing the large-scales is established, one can proceed with the task of actually calibrating the downscaling models. There are different options, and the best choice depends on the type of predictand. If the relationship between the predictor and predictand is expected to reflect the two sides of an equation (ideally with the same physical units), then the simple linear approach is probably the best choice. If the relationship between the large and small scales are theoretically known, it is also possible to apply a transform to the quantity on either side of the equation to make the quantities linearly dependent. Whenever possible, a linear model is to be preferred for the reasons of simplicity and transparency.

Linear methods

Linear methods include regression, for instance least-mean-squares estimation. If the data are normally distributed (Gaussian), then an ordinary linear model (OLM) can be employed in a regression analysis, but for non-Gaussian data, a generalised linear model (GLM) should be used. For Gaussian data, canonical correlation analysis (CCA) (Busuioc et al., 1999) and singular vector decomposition (SVD) are alternatives to regression (Bretherton et al., 1992). The difference between these approaches, is that regression minimizes the root-mean-square errors (distance between predictions and observations), the CCA maximizes the correlation, and SVD maximizes the co-variance between two fields. 

The calibration of the linear models gives a set of coefficients describing how the different PCs should be weighted (a scaling factor) for get an optimal fit. Moreover, the linear methods involves weighting a combination of time series differently so that their sum gives the best reproduction of a given 'truth'. If the training set involves  many different series, it is possible to find a set of combination that can provide a good fit even if there is no real link between the predictand and predictor. This situation is known as 'over-fit' (Wilks, 1995), and, hence, multiple regression should involve stepwise screening to avoid over-fit. The set of coefficients can be applied to the spatial patterns (EOFs) - in addition to the PCs – and hence the sum of the weighted patterns describes the spatial structure in the predictor that is associated with the variations in the predictand. This pattern is referred to as 'regression pattern', and can provide a basis for evaluation. In many cases, there are a priori information about what this pattern should look like, such as a spatial map of correlation coefficients. In all cases, the downscaling models should be evaluated on independent (out-of-sample) data, which were not used for calibrating the model.  

Non-linear methods

The non-linear methods involve various strategies, such as analogs, weather classification, cluster analysis, and neural nets. The analog model, weather classification, and cluster analysis all involve a re-sampling of past measurements. These re-sampling techniques suffer from one caveat, that tails of the distributions will be distorted because the sampling cannot produce new record-breaking values (Benestad, 2008).  Even stationary series are expected to produce new record-breaking events, given sufficiently long intervals for observations. Theory of independent and identically distributed (iid) series shows that the expected occurrence of new record-breaking events will converge towards zero, but never actually become zero. Nevertheless, this implies that the upper and lower tails of the distribution of the results from the re-sampling methods may be distorted, and that the results may have to be re-calibrated. A re-calibration can be performed once the theoretical pdf is known through local quantile mapping.

Analog models

The simplest non-linear method is the analog model (Zorita and von Storch, 1999; Timbal et al., 2008), which simply involves searching the record of past events and taking the day that most closely matches the situation one wants to predict. The observed value for the predictand for this day is then used as predictand. Typically, the situation is described in terms of mean sea-level pressure (MSLP) patterns, and the task is to find the MSLP from the past records that most closely matches the one that the climate model predicts for the future. There are a number of different criteria for selecting the 'most similar state'. A simple scheme is to apply pattern correlation. The search may also be based on how similar the states are in terms of an EOF-analysis. Such a search uses the leading EOFs to define an 'n-dimensional' space (Imbert & Benestad, 2005), and defines the day with the least euclidean distance between the PC loadings for the historical record and the predicted situation as the best analog. 

Cluster analysis

It is also possible to base the predictions on a number of closest states (Wilks, 1995), either by taking the mean of the days with close matches. Another approach is to use the observed values for the all the days that match the predicted state, and construct a statistical distribution (histogram). From this sample, or a fitted probability density distribution, one may draw a random value. In some cases, the PC loadings may cluster into different groups in the EOF space, and then it is possible to use these clusters for defining the number of days with similar states. A cluster analysis is used to group the EOFs into different regimes.

Neural nets 

Neural nets involve various adaptive learning algorithms, like 'artificial intelligence' (Hewitson and Crane, 2002; Wilby et al., 1998). These may be effective at identifying signals and patterns, but it can be difficult to understand their physical meaning. Often, neural nets are used to prepare the data before the actual downscaling, for instance by classifying the data in terms of 'self-organised maps' (SOMS). The disadvantage with neural nets is that they need long time series for proper calibration, and it is important to test the results to see if they identified real relationships. Neural nets may provide a fit that is fortuitous rather than real, and care must therefore be exercised when employing these. It is also hard to see what actually happens within the calibration process, and such non-linear techniques have some times been characterised as a 'black box' (Imbert & Benestad, 2005).
4a.4.4. Advantages with perfect prognosis methods

The advantage with the perfect prognosis methods, linear and non-linear, is that they add and make use of additional empirical information, thereby providing more realistic results than the raw model results. Models provide a simplistic and idealised description of the real world, and most global climate models are not designed to describe local details. The perfect prognosis methods moreover provide a bridge between model and real observations, mapping (in mathematical terms) the model results onto real data. Often, the quality of the GCM results may be assessed though empirical-statistical downscaling (ESD). 


Even regional climate models (RCMs) are limited in terms of describing the local scale, as their resolution may not provide an adequate description of the real terrain (smoothed surface description), and the parametrisation of small-scale processes may not account for local spatial variability in vegetation, hydrology, and elevation. Furthermore, RCMs may have systematic biases, and the different choices for the representation of small-scale processes (parameterisation packages, often referred to as 'model physics' although these are statistical models) may give different results. Hence, RCMs may introduce additional uncertainties (Pillippo et al., 2008). 

Finally, perfect prognosis methods are fast to run, and ideally for downscaling a large ensemble of GCMs and over entire simulation runs. RCMs, on the other hand, tend to be more computationally demanding, which limits the number of realisations that can be provided. The strengths and weaknesses of perfect prognosis methods and the RCMs are independent of each other, so that both approaches should be employed and the results should be compared. Converging results provide additional confidence, whereas diverging results bring on the question about which is more reliable.

Disadvantages

The main disadvantage of all empirical-statistical downscaling (ESD) is that they are limited in terms of predicting variables for which there are long and good quality observations. This means that ESD can be applied to locations were measurements have been made for a long time, for instance of temperature or precipitation. The time resolution of the measurements, as well as of the predictors, also limits the type of results that can be achieved. RCMs, on the other hand, can provide a complete picture in time, space, for different time scales, and with internally consistent relations between the different variables. The consistency between the different variables may, however, not necessarily match that seen in the real world, and hence the term 'physically consistent' is inappropriate for describing these models.

The perfect prognosis methods also make a number of assumptions, such as the relationship between predictand and predictor does not change over time. Similar assumptions are made for the parametrisation used in both GCMs and RCMs, for instance the relationship between aerosols and cloud drops, between gravity waves and the mean flow, surface vegetation and the temperature/water, etc. As far as possible, these statistical models are based on a physical understanding (e.g. bulk formula for wind stress, convection schemes), and hence are based on more information than just a statistical analysis. It is important to evaluate the robustness of these statistical models, by dividing the data into two parts, use one part for calibration and the other for verification. Furthermore, the model results may be used as surrogate data, using the first half of the simulation run to represent the observations. A surrogate for the predictand can be taken from a grid point, whereas the predictor is taken to be the large-scale pattern. 

The choice between representing the predictors in terms of EOFs or as grid-point values, may also introduce differences (Huth, 2004). The results may even be sensitive to the size of the predictor domain (Benestad, 2011), for which a subjective choice must be made. If the domain is too large, unrelated noise may 'drown' the relationship between the predictor and predictand, and negatively correlated teleconnections may give incorrect signs (Benestad et al. 2008).

Errors in observations will hamper the construction and evaluation of perfect prognosis methods. In some cases, it may be possible to get around this problem by excluding suspect numbers. For instance, if there is a small number of very large errors (outliers), then the calibration (Imbert & Benestad, 2005) may be carried out on a subset of the data. However, care must be exercised for not 'mining' the data and 'cherry-picking' the data. It is always a good idea to test the models on out-of-sample (independent) data.

Sometimes it may be difficult to identify which variables to use as predictors. It is important that the predictors 'carry the signal' that we want to predict. MSLP may for instance be a poor choice for climate change scenarios, as there may not be a close link between the pressure patterns and a general warming. The predictors should also exhibit a strong relationship with the predictand, so that a large portion of the predictand variance can be reproduced. For regression analysis, the portion of the variance is reflected in the R2-statistic (Wilks, 1995). Finally, the perfect prognosis methods hinge on the GCMs' ability to reproduce the regional details, and hence similar structures in the predictors as seen in the observations.

All the requirements regarding predictors, restrict the choice, which can be a limiting factor to successful employment of perfect prognosis methods. For temperature, however, large-scale temperature fields from re-analyses seem to be a workable solution to the choice of predictors (Benestad, 2011; Hanssen-Bauer et al., 2005). The benefit is also the lower risk of non-stationarity, as the local temperature is expected to be a part of the larger temperature structure for physical reasons. 

It is more tricky to find suitable predictors for precipitation. Large-scale precipitation, which can be taken from re-analyses, is expected to contain long-term signal, but is often not strongly related to the local precipitation measurements. The reason is that precipitation from re-analyses are prognoses that are not directly constrained by observations, and that these prognoses suffer from biases and model shortcomings. Another issue is whether the GCMs are able to reproduce the general regional spatial precipitation structures. For daily precipitation, the data are strongly non-Gaussian, and may exhibit a different statistical distribution to the precipitation structure over larger areas. MSLP does not (at least explicitly) hold information about the air's thermodynamic character (temperature and humidity), and may not contain all of the climate change signal.

Most of the weaknesses with perfect prognosis methods, however, can be explored. ESD should not be seen as merely a way to get a value, but as an advanced form for analysis, where different relations can be tested. For instance, the question about non-stationarity can be tested through appropriate experimentation, where the predictors and predictand are split into two parts, with one being used for calibration and the other for evaluation. The ESD models may also be developed entirely on GCM data, taking a grid-point as the predictand and a larger area as predictor. Furthermore, spatial analysis of results from neighbouring stations and R2-statistics can provide useful information about the quality of the results (Benestad, 2011). Since RCMs and ESD are independent and complimentary means of downscaling, with different weaknesses and strengths, it is also important to carry out both and look for where the results converge and diverge. 

The weaknesses discussed above may not involve the greatest uncertainties associated with downscaling. Often the regional picture provided by different GCMs, or even different runs with the same GCM, vary substantially (Giorgi, et al., 2008; Chen et al., 2006). Hence, it is important to sample the spread of possible solutions through large ensembles of GCM runs (such as CMIP3 and CMIP5). Since ESD is computationally cheap and effective, it provides a well-suited means for providing information about probabilities and confidence ranges. ESD can also be used to downscale local climate for remote locations far apart (Benestad, 2011). RCMs, on the other hand, is more limited in terms of number, region, and length of runs, but provide a more comprehensive picture of space and interrelations for a smaller selection of climate projections. 

A final comment about ESD is the possibility to downscale the shape of pdfs directly. New promising methods are being developed for 24-hr precipitation, and preliminary results suggest that it may be possible to predict changes in percentiles once the change in the wet-day mean precipitation and the wet-day frequency is known. This type of approach is discussed in more detail in Benestad et al. (2008) and Benestad (2007). 
4a. 5 Weather generators

Stochastic weather generators are statistical numerical models producing high resolution local-scale time series of a suite of elements like temperature, precipitation and others, whose large scale statistics follow the required criteria (Richardson, 1981; Wilks and Wilby, 1999; Olsson et al., 2009; Willems and Vrac, 2011). Among many applications they can serve as a computationally effective tool to produce site specific data sets at required time resolution (Semenov et al., 1998).

The distribution used is usually different for different climate variables.  For temperature the normal distribution is the most popular (Semenov et al., 1998). More complicated is generation of precipitation data and different functions are used. Among the most popular are Markov chain, semi empirical and Neyman-Scott Rectangular Pulse (NSRP) weather generator. In Markov chain generator precipitation occurrence and totals are produced separately (Sunyer et al., 2012). Two states are possible wet or dry days. The amount of precipitation on rainy (wet) day is most often generated using gamma or exponential distribution. In semi-empirical generator a few distributions can be defined, for instance for wet and dry spell lengths and precipitation amount. In the NSRP weather generator Kilsby et al. (2007) propose to use four different steps. A storm origin is described by Poisson process. Separate rain cells within a storm are separated by time intervals taken from exponential distribution. The duration and intensity of each rain cell are also described by exponential distributions and their sum gives a rainfall total. 

Weather generators can be used when the observation records are relatively short. They can also supply many weater "realizations" having the same overall statistics. A wide suite of statistics can be used to fit the model: mean, variance, skewness, autocorrelation and many others. Weather generators can also serve to produce data in locations when there are only short records of high temporal resolution data, but the longer ones with data of low resolution and to produce projections for temporal scales higher than usually produced by RCMs (6 hours). 

4a.6 Ensembles, how to use them, how to assess an error of projection? 
As we have seen above all techniques developed to derive regional scale climate information are associated with uncertainties. This holds true both for direct use of global climate model output as well as information emanating from dynamical or statistical downscaling techniques. Uncertainties related to forcing, climate sensitivity and natural variability can, at least to some degree, be treated by utilizing climate change information from ensembles including a large number of climate change experiments.  

Different types of ensembles?

Ensembles of climate change simulations can be constructed so that they sample different GCMs with different climate sensitivity under different emission scenarios starting from different initial conditions. Such climate change experiments could be performed by the use of multi-model ensembles (e.g. van der Linden and Mitchell, 2009). Under a given forcing scenario the spread between the different models can then be taken as an indicator of the uncertainty related to structural differences between models, differences in parameterizations and different initial conditions. In total there exist some 20-30 different global climate models worldwide that can constitute such a multi-model ensemble. 

A problem in the context of uncertainty is that different climate models are not totally independent of each other but rather share parts of the code. This means that any multi-model ensemble will contain members that are related to each other. Further, the degree of freedom in a GCM is very large implying that even if all different GCMs are used the full range of model uncertainty will not be sampled by a multi-model ensemble. As an alternative, perturbed-physics ensembles with a much larger number of ensemble members have been developed (e.g. Murphy et al., 2007). In these ensembles, one model is used as a reference. In addition to the reference simulation a large number of simulations with the same model, where one or more of the model parameters have been altered within their uncertainty bounds, are performed. In this way the parametric uncertainty can be addressed along with the uncertainty related to initial conditions. 

Even if the number of simulations is much larger in a perturbed-physics ensemble compared to that in multi-model ensembles this type of experiment will not sample the structural differences between different GCMs and therefore the full model uncertainty is not sampled by perturbed-physics ensembles either. Recently, comparisons between perturbed-physics ensembles based on different GCMs (Yokohata et al., 2010) and between perturbed-physics ensembles based on one GCM and multi-model ensembles (Collins et al., 2011) have been performed. In the ENSEMBLES project (van der Linden and Mitchell, 2009) uncertainties due to structural effects as determined from the multi-model CMIP3 GCM-ensemble was added to the parametric uncertainties from the HadCM3 perturbed-physics ensemble to yield a total uncertainty that could be used in the production of probabilistic climate change projections. In both multi-model ensembles and perturbed-physics ensembles it is not possible to distinguish between uncertainty related to model formulation and that related to initial conditions unless several ensemble members sampling also initial conditions are performed for each multi-model or perturbed physics ensemble member. 

Are ensemble projections better than those based on single climate projections?

Multi-model ensemble means have been shown to outperform the single model simulations it consists of. This has been shown to result from the fact that models are overconfident, i.e. they have a too small spread in the ensemble, centered at the wrong value (Weigel et al., 2008). The good performance of the multi-model ensemble means holds true in a general sense though for individual variables, seasons and regions one can find single models that are better than the ensemble mean. This has been shown in a number of studies on the European scale based on RCMs downscaling reanalysis data in the ENSEMBLES-project (e.g. Kjellström et al., 2010; Lorenz and Jacob, 2010; Lenderink, 2010). A practical problem here is that it is different models that perform best in different aspects otherwise it could be an idea to use only the best model (e.g. Christensen et al., 2010). This makes it difficult to know which model to choose and favors the use of the multi-model ensemble mean over any single model results.

Performance-based weighting of ensembles

Different climate models show more or less good agreement to observations. An idea is to utilize these differences to derive weights that can be applied when results from different models are to be combined in a common climate change signal. The rationale would be to give models with a better agreement to observations larger weights compared to others with less good agreement. This is an appealing thought but there are a number of issues related to it. For example, a model can have a good agreement in one variable but not in others, in one season not in others, the agreement can be due to compensating errors, etc. Further, any performance-based weights will have to be calculated based on agreement in the past decades and therefore not necessarily applicable to future climate conditions. Also, regardless of how objective the methods used to derive weights are there is a high degree of subjectivity as to which metrics to use and what observational data that should go into the analysis (e.g. Christensen et al., 2010). 

In the ENSEMBLES project a weighting system was designed and tested. It consists of a combination of a series of weights derived from evaluation of different aspects of RCM performance. These aspects includes: reproduction of large-scale atmospheric circulation patterns, meso-scale patterns, daily temperature and precipitation distributions and extremes, trends and the annual cycle (Christensen et al., 2010). They found no compelling evidence of an improved description of mean climate-states when the weights were used. Further, they conclude that using model weights adds another level of uncertainty to the generation of ensemble-based projections. A particular problem related to RCM-ensembles is that the underlying GCM simulation to a large degree governs the results. Application of weights that are determined for RCMs in reanalysis-driven simulations (Christensen et al., 2010) on GCM-driven simulations with the same RCMs may therefore not lead an improvement in the overall ensemble skill (Déqué et al., 2010).

Design and use of GCM-RCM ensemble regional climate projections

Traditionally climate change ensembles are “ensembles of opportunity”, i.e. they are the result of a compilation of more or less coordinated climate change experiments. This means that there have not been any deliberate attempts to design the ensemble so as to sample uncertainty in any specific way. Recently, however, there have been some attempts to design GCM-RCM ensembles in order to sample various kinds of uncertainty in a somewhat more systematic way. The PRUDENCE project mainly addressed uncertainty related to RCM formulation with 11 RCMs downscaling one same GCM under the same emission scenario, but there were also other GCMs and emission scenarios included in that project (Christensen and Christensen, 2007). Based on these results Déqué et al. (2007) concluded that uncertainty in future European climate change related is generally more associated to the choice of GCM than to which RCM that is used, in particular for temperature. Consequently, in the ENSEMBLES project, there was emphasis on having a larger ensemble with more GCMs involved (van der Linden and Mitchell, 2009). In a recent study, Déqué et al. (2011) investigates sources of uncertainty in the ENSEMBLES GCM-RCM ensemble. This new study confirms results from the Déqué et al. (2007) paper that choice of GCM is the dominant source of uncertainty. But, there are exceptions like for summertime precipitation when RCM formulation may in fact be the dominant source of uncertainty. Other examples of GCM-RCM ensembles involves ensembles with the Norwegian RCM sampling several GCMs (Haugen and Iversen, 2008) or the Swedish RCM sampling a range of different GCMs under different emission scenarios and in some case with different initial conditions (Kjellström et al., 2011). Based on results from the ENSEMBLES simulations and the Swedish model Kendon et al. (2010) also concludes that sampling of GCM uncertainty is most important but also that RCM uncertainty needs to be sampled, at least in some regions and seasons.

4a.7 Model output statistics 

Assessments of climate impacts on various aspects of everyday life of humans, economy and ecosystems need an information on future climate. It is necessary for stakeholders and decision makers to undertake appropriate measures to prepare for the future. 

Each model is only a simplification of reality. That is why no GCMs nor RCMs outputs can be directly used as input forcing impact models. RCMs are driven by GCM outputs so they inherit systematic errors in the driving fields. If the GCMs outputs are biased, these biases have impact on the quality of regional simulations. The other limitation is that there is still the need to downscale areal averages given as grid values in model outputs to point values necessary for input studies (Xu et al., 2005). In many RCMs cold bias in Europe increases in winter to the north reaching -7°C in the ensemble mean in the north-eastern part of European Russia (Christensen et al., 2007).  There are also biases in simulated precipitation, for instance winter precipitation in northern Europe tends to be overestimated (Jacob et al., 2007; Christensen et al., 2007). Kjellström et al. (2007) has shown that the biases in the tails of the temperature distribution are even larger than the biases in average temperatures and vary substantially between models. The ability of models to simulate wind climate is also limited. In majority of models  the high wind speed is strongly underestimated over land and coastal areas (Rockel and Woth, 2007). It means that it is necessary to find a method to cope with these biases - discrepancies between observations and values modeled for present day climate. After that the more realistic datasets of forcing fields incorporating the projected changes can be created and used for impact studies (Piani et al., 2007). This can be done with the set of methods known as Model Output Statistics (MOS). There are generally two groups of such methods. One is referred to as perturbation of observed data (POD) or delta change (DC) method (Hay et al., 2000; Lenderink et al., 2007, Roosmalen et al., 2011). The other is known as bias correction method (Déqué et al., 2007; Piani et al., 2010). 

4a.7.1 Bias correction method

Validation of models by comparison with observations make it possible to quantify the model biases. The assessment of bias is the first step necessary before using the model output to force impact models. Unfortunately model bias is not uniform in space. It means that it is necessary to find the differences for each interesting point separately. It is possible to do it comparing mean value of modeled variable in the point under interest with mean value of this variable from observations. Such procedure needs a relatively long and homogenized data with high spatial resolution. A bias is not uniform in time also and has an intra-annual course especially strong for precipitation. GCMs and RCMs outputs give values of variables in a set of grid points in regular time steps. These values are usually areal averages so cannot be directly compared with observations which are  point values. Areal averaging is a kind of smoothing which makes high values lower and low values higher, so the range of areal averages is usually much lower than the range of point values. It means that the bias can vary also within different parts the distribution of variables. It makes the bias identification a really difficult task. 

The bias correction or scaling is based on the assumption that statistical relationship between observations and RCM simulation for present day climate is the same as between future climate and RCM simulations for future climate. Bias-correction values are calculated comparing observations with RCM simulations for the same period. Because two climates are compared: the real one with the simulated, the period should be relatively long, covering at least 10 and preferably 30 year period. The differences can be absolute or relative differences, relative to the kind of variable.    

In some cases the impact models need only seasonal of monthly mean values. Then it is enough to compare long-term means of observations and RCM simulations for present day climate (Graham et al., 2007; Schmidli et al., 2006). Then obtained correction factors can be applied to RCM simulations for future to get the scenarios. In many cases the bias-correction factors are not fixed for all values but different in different parts of distribution. It is sometimes referred to as distribution-based scaling (DBS; Yang et al., 2010; Roosmalen et al., 2011). Déqué (2007) and Piani et al., (2010) gave a detailed description of the method. The DBS can be based on comparison of cumulative distribution functions (cdf) of observed against simulated data or on quantile-quantile (q-q) plots, where quantiles of observed values are plotted against quantiles of simulated data. The main disadvantage of cdf comparison is that the range of observations can considerably differ from the range of simulated data, so some information is lost (Déqué, 2007). 

4a.7.2 Perturbation of observed data

There are generally two different ways of construction of such data. One of them is called the delta change (DC) method (Hay et al., 2000; Roosmalen et al., 2011). In this approach the long-term mean absolute or relative change factor is calculated on the basis of RCM projection of future and present day (reference) climate and applied to the observation record (Yang et al., 2010; Roosmalen et al., 2011). It can be the same change factor for all data or different for different calendar seasons or months. Sometimes the change factor can be also a function of the magnitude of variable (Olsson et al., 2009) being different in the different parts of the frequency distribution. The method proposed by Olsson et al. (2009) can be applied to data with high temporal resolution (for instance 30 min. precipitation totals).  In DC methods the bias of the RCM output variables is not necessary. Instead of it the absolute or relative delta change factor (DCF) should be assessed by comparing the climate model output representing present and future climate (Olsson et al., 2009). Then the observed variable is rescaled and used as input to impact models. 

In the case of temperature the absolute factors are usually used. They can be calculated for calendar seasons or months. Because RCMs usually overestimate low temperatures and underestimate high temperatures in many applications different DCF are used for different parts of the distribution. They can be obtained by comparison of distributions of the climate model output representing present and future climate (Olsson et al., 2009) or by adaptation of linear transfer function, when the change in temperature is a function of observed daily temperature (Graham et al., 2007). Such transfer function can be obtained separately for different months or seasons.

For precipitation the relative factors are usually used being the percentage increase or decrease in average monthly, seasonal or annual precipitation. Because of different processes leading to precipitation in autumn and winter (large scale frontal) and spring and summer (also convective) usually different factors are used in different months or seasons. In some cases daily totals are necessary as inputs to impact models. Then DCF differ also in parts of distribution, being lower than one for lower daily totals and higher for high percentiles of daily totals and observations are scaled up or down accordingly. Two main assumptions are usually made. First that RCMs simulate relative changes in climate rather than absolute changes; and second that there number of dry days does not change (Semadeni-Davis et al., 2008). 

Unfortunately these methods do not alter the number of dry days, so there is a need to use more sophisticated methods for this purpose. 

4a.7.3 Discussion of skills

The main advantage of the DC method is its simplicity. The existing observation data sets are perturbed, but the temporal and spatial correlations do not change significantly. However Semadeni-Davies et al. (2008) warns that in some months the change in precipitation totals may be caused also by the change of dominant precipitation type (i.e. from frontal to convective or opposite). In such cases simply scaling of precipitation may not give good results. 

The q-q method does not correct the temporal properties of the records, like for instance persistency (Déqué, 2007). If modeled data have different autocorrelation than observations, the autocorrelation of scenario data will also be different. 

Piani et al. (2010) used the DBS methodology for precipitation scenario. They assumed that daily precipitation totals on wet days in both observed and simulated dataset have gamma distribution. Then the six parameters (gamma distribution shape and scaling parameters and numbers of dry days in observed and simulated records) were found for 10-year period 1961-1970. On this basis bias corrections were calculated, applied to simulated data in the period 1991-2000 and compared with observations from this period. The periods was chosen to maximize the time lag between them and test if the bias corrections estimated in one period can be applied in the other in different climatic conditions. Results were surprisingly good. Not only mean and higher moments of scenario data fitted well with observed data, but also indices depending on autocorrelation spectra, as drought and heavy precipitation index  were well projected. 

In some impact models physical consistency between variables, specially such as temperature, precipitation and humidity is of great importance. Then the multivariate methods of bias correction should be implemented with simultaneous correction of two or more variables. Such methods would be more accurate than correction of each variable separately, but less robust (Déqué, 2007).

Graham et al. (2007) applied the POD and bias-correction methods to correct daily precipitation totals and temperature from the RCM outputs and used them in hydrological model for the Lule River basin in Sweden. The correction factors in POD were fixed for calendar months and applied to daily data. In the bias-correction method scaling factors were applied on annual basis and for comparison also on monthly basis. The method used does not alter the number of rainy days. It was shown that even scaling on annual basis improved projected river discharge, but when monthly scaling was applied the results were much better, but the spring peak flow was overestimated in both cases. It was also shown that both methods (POD and bias correction) gave similar results for the mean annual runoff volumes, but differ considerably in the extreme runoff. 
Some comments on using downscaling methods in applications 
Comparing statistical downscaling techniques with the dynamical ones many authors mention among the advantages of statistical methods that they provide point-scale climatic variables, can be used for variables not available from GCMs and/or RCMs and are relatively cheap (Wilby and Wigley, 1997; Fowler et al., 2007; Benestad et al. 200?). However there are also disadvantages. Statistical downscaling techniques require long and reliable measurement records. They are based on not necessary stationary relationship between predictors and predictand.  Their skill is strongly related to the choice of predictors, domain size, time-scale and GCM's forcing factors and biases. On the other hand as the most important advantages of dynamical downscaling the physical consistency of predicted variables and smaller resolution than that given by GCMs are usually mentioned (Wilby and Wigley, 1997; Fowler et al., 2007; Maraun et al., 2010). The strong dependence on GCM's forcing and biases as well as high costs of simulations are mentioned as a main disadvantages of dynamical techniques. 

Some authors shown that RCMs have a greater skill in simulating convective precipitation (Murphy, 1999). Hellström et al. (2001) checked that downscaling improves the simulation of the seasonal cycle of precipiatation.

Haylock et al. (2006) used six statistical and two dynamical downscaling methods and checked their ability to heavy precipitation indices. They found that the greatest skill was in winter, when the spatial coherence of rainfall was higher, and the lowest in summer. Also Goodess et al. (2007) analysing 22 statistical downscaling methods in STARDEX project shown better skill in winter than in summer.  It was also shown that methods  based on non-linear ANNs have a great skill in modelling the inter-annual variability, but they underestinmate extremes (Haylock et al., 2006). Some authors indicate that RCMs without bias correction do not improve much comparing with the GCM outputs (Wilby et al., 2000); Díez et al., 2005).

Many authors underline that skill of downscaling methods is related to region (Fowler et al., 2007). But there is no agreement when going to details. Huth (1999) has shown that the downscaling skill for mean daily temperature statistical downscaling methods increases with elevation, but Kleinn et al. (2005) has shown the opposite. 

In the case of extremes some authors indicate that their occurrence is better downscaled than intensities (Frei et al.,2006,  Haylock et al., 2006; Goodess et al., 2007). 

Boberg et al. (2000) have shown that the PRUDENCE RCMs have high skill in performing moderate precipitation and much lower in predicting low daily totals (<5 mm/day) as well as very high ones (>80mm). Models generally predict too much wet days (Fowler et al., 2007). It is sometimes called “drizzle effect”. The effect can be easily overcome using a threshold, below which the precipitation is equalled to zero (Schmidli et al., 2006). Because models give the spatialy averaged precipitation they also underestimate high precipitation. A quantile related corrections used in MOS methods can help. 

Randomization
Models generally underestimate the local-scale variance. Karl et al. (1990) proposed using a scaling factor to ensure that the variance of the projected surface values will match the observed one. But it results in an increase of error of estimates, a method called inflation. Von Storch (1999) argued that this is not a proper method, because of relating a variance of predictor on a variance of predictand. Instead of this he proposed a randomization method relying on adding a noise (not necessary a white one). The other method of solving too small variance problem was developed by Bürger (1996) and called “variance-optimized” version of expanded downscaling. It was a kind of CCA methodology. Bürger and Chen (2005) compared all these methods . They found that inflation for multisite downscaling does not describe the spatial correlation. Randomization has a problem with simulating variance in a future climate. The third method is very sensitive to quality of normalization. 

Impact studies

The GCMs were not designed for the direct application in impact models. Prudhomme et al. (2002) stated that quality of their outputs do not allow their direct use in hydrological impact studies, because of too high spatial and temporal scales. Wilby et al. (1999) recommends use of downscaling techniques before. There are many possibilities: direct use the RCMs outputs (Wood et al., 2004; Graham et al., 2007), use of bias-corrected RCMs outputs (Wood et al., 2004; Fowler et al, 2007a), statistical downscaling results (Wilby et al., 2000; Müller-Wohlfeil et al., 2000), stochastic weather generators (Evans and Schreider,2002) or weather typologies and/or indices (Pilling and Jones, 2002). The skills of different methods differ considerably between regions. 

Hydrologic simulation was found to be sensitive to biases in the spatial distribution of temperature and precipitation at the monthly level, especcially where seasonal snow pack transfers run-off from one season to the next (Fowler et al. 2007).

Graham et al. (2007a) on the example of Lule river in northern
 Sweden and two GCMs used to force the same RCM have shown that the choice of driving GCM has a greater impact on results than the choice of emission scenario. The strong impact of the choice of GCM on impacts was underlined also by Widmann et al. (2003), Jasper et al. (2004), Salathé (2005) and Wilby et al. (2006). 

Fowler et al., (2007) stated that at least two variables, temperature and precipitation, have to be downscaled for impact studies in hydrology. Both these variables are interrelated and this relation should be preserved in downscaling procedures. It is possible when RCMs are used even if the bias correction is made (Fowler and Kilsby, 2007; Fowler et al., 2007; Graham et al., 2007a,b), but the statistical downscaling usually not. It is necessary to downscale all variables simultanously. At the same time it should be a multi-site approach, because the spatial and temporal consistency is needed. 
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